MHB Kate's Chances of Winning a 5 Match Tennis Tournament

AI Thread Summary
Kate has an 80% probability of winning each tennis match. In a 5-match knockout tournament, her chance of winning the tournament is calculated as 0.8^5, resulting in approximately 33%. If she wins her first three matches, the probability of winning the tournament remains the same, as winning all five matches includes winning the first three. The discussion clarifies that the intersection of winning the first three and winning all five is simply winning all five matches. Therefore, the probability calculations reinforce that winning all five matches is the only way to satisfy both conditions.
Bushy
Messages
40
Reaction score
0
The Probability of Kate winning a tennis match is 80%. If she enters a 5 match knockout tournament, find the chance of her:

a) winning the tournament:


Is simply 0.8^5 = 33%

b) winning the tournament given she wins her first three games:

Is the intersection of the two over the probability she wins the first three = 0.8^5 * 0.8^3 / 0.8^3 = the same as part a?
 
Mathematics news on Phys.org
Bushy said:
The Probability of Kate winning a tennis match is 80%. If she enters a 5 match knockout tournament, find the chance of her:

a) winning the tournament:


Is simply 0.8^5 = 33%

Keep your answer exact please. $\displaystyle \begin{align*} \left( \frac{4}{5} \right) ^5 = \frac{1024}{3125} \end{align*}$.

b) winning the tournament given she wins her first three games:

Is the intersection of the two over the probability she wins the first three = 0.8^5 * 0.8^3 / 0.8^3 = the same as part a?

No, winning all five and winning the first three is equivalent to simply winning all five. So the intersection is simply what you found in part (a).
 
Prove It said:
No, winning all five and winning the first three is equivalent to simply winning all five. So the intersection is simply what you found in part (a).

Therefore 0.8^3 / 0.8^3 = 1 ?
 
Bushy said:
Therefore 0.8^3 / 0.8^3 = 1 ?

NO! The top is the probability of winning all FIVE!
 
Well that would give a neat answer, but aren't we saying the intersection of winning the first three and winning all five should be winning the 1st three?
 
Bushy said:
Well that would give a neat answer, but aren't we saying the intersection of winning the first three and winning all five should be winning the 1st three?

No, the only way it is possible to do both "winning all five games" and "winning the first three games" is to win all five games!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top