I Kepler orbits for planets of similar masses

AI Thread Summary
The discussion revolves around applying Kepler's laws to a two-body problem where neither mass is significantly larger than the other. It questions how to calculate the period, distance, and velocity of such a system in an inertial reference frame. The third Kepler law is highlighted, noting that the semi-major axis "a" should be considered in relation to the combined masses of the two bodies. The concept of reduced mass is suggested as a potential solution for these calculations. Overall, the thread emphasizes the need to adapt Kepler's laws for more complex gravitational interactions.
jaumzaum
Messages
433
Reaction score
33
When we use the third Kepler law to calculate the period, distance and velocity of the Earth, we consider that the Sun is fixed. We know this is not true, because the Sun is also attracted by the Earth. I was wondering, how could we use Kepler laws to calculate the period, distance and velocity of a 2-body-problem in relation to an inertial reference frame, if neithe of them has a mass much larger than the other.

Another doubt, in Third Kepler law seen below:
##\frac{T^2}{a^3}=\frac{4\pi^2}{G(M+m)}##
The "a" is calculated in relation to the other planet (the referential is the second planet) or in relation to an inertial frame?

To illustrate what I mean above, If we consider two bodies, of masses M and 3M, the maximal distance between them is x and the minimum is y. Haw can we calculate the period and the semi-major axes and eccentricities of both ellipses?

Thank you very much
 
Physics news on Phys.org
jaumzaum said:
I was wondering, how could we use Kepler laws to calculate the period, distance and velocity of a 2-body-problem in relation to an inertial reference frame, if neithe of them has a mass much larger than the other.
You may want to look into the concept of reduced mass.
 
  • Like
Likes topsquark, PeroK and Ibix
jaumzaum said:
When we use the third Kepler law to calculate the period, distance and velocity of the Earth, we consider that the Sun is fixed. We know this is not true, because the Sun is also attracted by the Earth. I was wondering, how could we use Kepler laws to calculate the period, distance and velocity of a 2-body-problem in relation to an inertial reference frame, if neithe of them has a mass much larger than the other.

Another doubt, in Third Kepler law seen below:
##\frac{T^2}{a^3}=\frac{4\pi^2}{G(M+m)}##
The "a" is calculated in relation to the other planet (the referential is the second planet) or in relation to an inertial frame?

To illustrate what I mean above, If we consider two bodies, of masses M and 3M, the maximal distance between them is x and the minimum is y. Haw can we calculate the period and the semi-major axes and eccentricities of both ellipses?

Thank you very much
This is the equation of Kepler's 3rd Law under consideration of the finite mass of the Sun, ##M##. That's why the right-hand side also depends on the mass of the planet, ##m##, and thus it's not Kepler's original law, which states that ##T^2/a^3=\text{const}##, i.e., the same constant for all planets in our solar system. That's indeed a good approximation, because ##M \gg m##.
 
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Back
Top