I Kerr Black Hole: Superradiance Flux - Show Negative when 0<ω<mΩH

  • I
  • Thread starter Thread starter ergospherical
  • Start date Start date
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,098
Reaction score
1,385
b) Show that the time averaged flux of ##J^a = -{T^a}_b \xi^b## across the horizon of a Kerr black hole is negative when ##0 \leq \omega \leq m\Omega_H ##. Given that ##dF = 0## i.e. ##\nabla_{[a} F_{bc]} = 0##,\begin{align*}
-2\nabla_{[a} (F_{b]c} w^c) &= F_{ac} \nabla_b w^c + F_{cb} \nabla_a w^c - w^c (\nabla_b F_{ca} + \nabla_a F_{bc}) \\
&= F_{ac} \nabla_b w^c + F_{cb} \nabla_a w^c + w^c \nabla_c F_{ab} \\
&= L_w F_{ab}
\end{align*}It is hinted to use this equation to relate ##F_{ab} \xi^b## to ##F_{ab} \chi^b##, but how? The tensor ##T## is ##T_{ab} = \nabla_a \phi \nabla_b \phi - \dfrac{1}{2} g_{ab} (\nabla_c \phi \nabla^c \phi + m^2 \phi^2)## so the time-averaged flux is ##\langle J_{a} (-\chi^a) \rangle = \langle (\chi^a \nabla_a \phi)(\xi^b \nabla_b \phi) \rangle##

edit: ##\xi = \dfrac{\partial}{\partial t}## and ##\chi = \dfrac{\partial}{\partial \phi}##
 
Physics news on Phys.org
Haha, well I'm glad I'm not the only one who found the hint to be cryptic. 😂
Can you see how to do it? I might try again tomorrow but I've spent slightly too long fiddling around, lol.
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...

Similar threads

Replies
1
Views
1K
Replies
21
Views
2K
Replies
4
Views
1K
Replies
16
Views
4K
Replies
8
Views
3K
Replies
39
Views
13K
Back
Top