Krotov problem: how to write Energy conservation for this fluid?

AI Thread Summary
The discussion centers on the Krotov problem and the challenges of writing energy conservation equations for fluid dynamics. A participant acknowledges errors in their calculations related to the radius of the fluid, specifically using the formula r = √(S/π) incorrectly. The relevance of this radius is questioned, as it is not provided in the problem data, leading to confusion about its necessity. Another participant points out that S represents the cross-sectional area, defined as S = πr², but questions the need for assuming a circular cross-section. The conversation highlights the importance of clear assumptions and accurate calculations in fluid dynamics problems.
ermia
Messages
13
Reaction score
0
Homework Statement
I uploaded the problem. when I want to write the potential energy of the fluid in the initial and final state I don't find the right answer. I know the rest of the problem.
Relevant Equations
$$ U=\rho g h A h_{cm} $$
I wrote some potentials but they were wrong. I used the cm of all fluid parts and I used the radius which is $$ \sqrt S/ \pi $$ .
 

Attachments

  • Apt.jpg
    Apt.jpg
    40.7 KB · Views: 121
Physics news on Phys.org
That equation for radius has a "type" error.
$$r =\sqrt \frac{S}{\pi} $$
 
Per forum rules, please post your working. Otherwise we have no way to know where you are going wrong.
 
Could you explain how is that radius, which is not shown as data in the problem, relevant?
 
Lnewqban said:
Could you explain how is that radius, which is not shown as data in the problem, relevant?
S is the cross sectional area, so ##S=\pi r^2##. But if you are asking why bother calculating the radius (you don't even have to assume it is a circular cross section) then I agree.
 
  • Like
Likes member 731016 and Lnewqban
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top