MHB Largest Even Integer: Impossible Sum of Two Odd Composites

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    even Integer
AI Thread Summary
The discussion centers on identifying the largest even integer that cannot be expressed as the sum of two odd composite numbers. Participants express confusion regarding the concept of bounding such an integer, especially considering the infinite nature of odd primes. The challenge lies in the properties of odd composites and their sums, which may not cover all even integers. The conversation highlights the complexities involved in number theory related to composite numbers. Ultimately, the quest remains to determine this elusive largest even integer.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the largest even integer which cannot be written as the sum of two odd composite numbers.
 
Mathematics news on Phys.org
anemone said:
Find the largest even integer which cannot be written as the sum of two odd composite numbers.
I must be missing something. Say we have a, b, c, d are all odd primes. Then e = ab + cd. But there is no largest prime so how can e be bounded?

-Dan
 
anemone said:
Find the largest even integer which cannot be written as the sum of two odd composite numbers.
I will use the notation $*5$ to denote any positive integer ending in $5$, apart from the number $5$ itself. So $*5$ could be $15,25,35,\ldots$. Notice that any number of the form $*5$ is odd and composite.

The smallest odd composite numbers are $9,15,21,25,27,33,\ldots$.

If an even integer ends in $0$ and is greater than $20$ then it is of the form $15 + *5$.

If an even integer ends in $2$ and is greater than $32$ then it is of the form $27 + *5$.

If an even integer ends in $4$ and is greater than $14$ then it is of the form $9 + *5$.

If an even integer ends in $6$ and is greater than $26$ then it is of the form $21 + *5$.

If an even integer ends in $8$ and is greater than $38$ then it is of the form $33 + *5$.

The largest even number not included in any of those categories is $38$. You can easily verify that $38$ cannot be expressed as the sum of two odd composite numbers. So it is the largest such even number.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top