MHB Laurent series, integral of a holomorphic function

Samwise1
Messages
14
Reaction score
0
We are given $$f = \sum_{n= - \infty} ^{\infty} a_n (z-z_0)^n \in \mathcal{O} (ann (z_0, r, R)), \ \ 0<r<R< \infty $$.

Prove that $$\frac{1}{\pi} \int _{ann (z_0, r, R)} |f(z)|^2 d \lambda(z) = \sum _{n \neq -1} \frac{R^{2n+2} - r^{2n+2}}{n+1}|a_n|^2 + 2 \log \frac{R}{r}|a_{-1}|^2$$.

We know that the series above is convergent, so $$R = \frac{1}{\limsup_ {n \rightarrow \infty} \sqrt[n]{|a_n|}}$$ and $$r = \limsup_ {n \rightarrow \infty} \sqrt[n]{|a_{-n}|}$$.

In the series $$\sum _{n \neq -1} \frac{R^{2n+2}}{n+1}|a_n|^2, \ \ \sum _{n \neq -1} \frac{r^{2n+2}}{n+1}|a_n|^2$$ we have $$b_n = \frac{|a_n|^2}{n+1}$$ and radii of convergence are $R'=\frac{1}{\limsup_ {n \rightarrow \infty} \sqrt[n]{\frac{|a_n|^2}{n+1}}} \ge \frac{1}{\limsup_ {n \rightarrow \infty} \sqrt[n]{|a_n|^2}} \ge \frac{1}{\limsup_ {n \rightarrow \infty} \sqrt[n]{|a_n|}}^2 = R^2$, so $$R' \ge R^2$$.

Similarly, $$r' = \limsup_ {n \rightarrow \infty} \sqrt[n]{\frac{|a_{-n}|^2}{n+1}} \le \limsup_ {n \rightarrow \infty} \sqrt[n]{|a_{-n}|^2} \le r^2$$.

So the two series are convergent - they have the form $$\sum b_n (z-z_0)^n$$ with $z=R^2$ or $-r^2$.

Does that make sense? Could you tell me how to prove the equality of the integral and the series?
 
Physics news on Phys.org
Hello again Samwise,

Could you please explain the meaning $d\lambda(z)$? Then I can assist you further.
 
If I'm not mistaken, the measure $\lambda$ is a complex measure, viewed as a two-dimensional Lebesgue measure? If so, then by using polar representation you can parametrize the annular region $\text{ann}(z_0, r, R)$ by setting $z = z_0 + \rho e^{it}$, $r \le \rho \le R$ and $0 \le t \le 2\pi$. Then

$$ \frac{1}{\pi} \int_{\text{ann}(z_0, r, R)} |f(z)|^2\, d\lambda(z) = \frac{1}{\pi}\int_r^R \int_0^{2\pi} |f(z_0 + \rho e^{it})|^2 \rho\, dt\, d\rho.$$

Now

$$|f(z)|^2 = f(z) \overline{f(z)} = \sum_{n,m\in \Bbb Z} a_n \overline{a}_m (z - z_0)^n\, \overline{(z - z_0)}^m,$$

which implies

$$|f(z_0 + \rho\, e^{it})|^2 = \sum_{n, m\in \Bbb Z} a_n \overline{a}_m\, \rho^n e^{int} \rho^m e^{-imt} = \sum_{n,m \in \Bbb Z} a_n \overline{a}_m \rho^{n+m} e^{i(n-m)t}.$$

Therefore

$$(*) \frac{1}{\pi} \int_r^R \int_0^{2\pi} |f(z_0 + \rho e^{it})|^2 \rho\, dt\, d\rho = \frac{1}{\pi} \sum_{n,m\in \Bbb Z} a_n \overline{a}_m \int_r^R \rho^{n + m + 1}\, d\rho \int_0^{2\pi} e^{i(n-m)t}\, dt.$$

Since $\int_0^{2\pi} e^{i(n-m)t} dt$ is $2\pi$ when $n = m$ and $0$ when $n \neq m$, the expression on the right hand side of $(*)$ is

$$2\sum_{n\in \Bbb Z} |a_n|^2 \int_r^R \rho^{2n+1}\, d\rho = \sum_{n\neq -1} |a_n|^2 \int_r^R 2\rho^{2n+1}\, d\rho + 2|a_{-1}|^2 \int_r^R \rho^{-1}\, d\rho$$

$$ = \sum_{n \neq -1} |a_n|^2 \frac{R^{2n+2} - r^{2n+2}}{n+1} + 2|a_{-1}|^2 \log \frac{R}{r}.$$
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...

Similar threads

Back
Top