- #71
Sherlock
- 341
- 0
Thanks ... I'm still thinking about this. Just read an article by A.J. Leggett, Reflections on the quantum measurement paradox, in Quantum Implications, Essays in Honor of David Bohm.vanesch said:I've done that already a few times, but probably the time to find back the original posts is just as long as typing it here again.
My reason for taking on the MWI viewpoint is this:
1) QM is seen as a "universal" theory (is supposed to describe what happens in the universe). This can be correct or wrong, but it is what QM claims. The axioms of QM do not include a domain of applicability.
2) QM contains precise rules of how composite systems, build up from smaller systems, are supposed to work (namely: the tensor product of hilbert spaces). There is no postulated limit to this, and as such, I can construct, if I want, the hilbert space of all particles in my body, and in the lab's instruments, and ...
3) The superposition principle is a basic postulate of QM
4) The unitary time evolution is a basic postulate in QM (it's time derivative is the hamiltonian).
5) All relevant physical interactions (except gravity, acknowledged) are known how to be represented by this unitary time evolution.
As such, there is, from the postulates,
1) a natural description of the measurement apparatus, including the body of the observer, as a vector in hilbert space (follows from the build-up as tensor products of hilbert spaces of the constitutents)
2) the unitarity of the time evolution operator acting upon this state
and from these two points, invariably, the body state of the observer ends up entangled with the different possible outcomes of measurements WITHOUT CHOOSING ONE of them (as is said in the projection postulate). As such, it almost naturally follows that, if we are going to require that we only observe ONE outcome (and not all of them in parallel, as do our bodies), we can only be aware of one of these terms, with a certain probability. Once we accept that we only observe ONE of our body states, a classical awareness can emerge.
This is the essence of MWI. There are variations on the theme. It follows from taking the postulates of QM seriously ; there's no escaping from this view if you accept the axioms of QM and apply them universally. The objection can be that we are using the quantum formalism way outside of where it was somehow *intended* to work, but in absence of a theory that tells us WHY this formalism doesn't work the way it does (in other words, an underlying theory explaining QM), this is what the current formalism of QM says, by itself. And although very weird, it is not self-contradictory (and, as I often tried to show here, gives even a natural frame to view certain "bizarre" results, such as EPR situations, quantum erasers, and other such things). The real problem doesn't reside in the weirdness, the real problem resides with gravity. I think that given this difficulty, all bets are still open.
Nevertheless, I still advocate the MWI view for practical reasons (can sound bizarre): it helps elucidate EPR paradoxes and other weird quantum phenomena. It is a great TOOL for understanding the QM formalism.
I have a question: what does the term, macroscopic, mean when used to refer to quantum states? I've always thought of macroscopic as meaning that something could be seen with the naked eye ... an unamplified (by instruments) visual phenomenon. So, what exactly is being seen in macroscopic quantum superpositions?