MHB LCC 206 {r3} integral rational expression

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny\text{LCC 206 {r3} integrarl rational expression}$
$$\displaystyle
I=\int \frac{3x}{\sqrt{x+4}}\,dx
=2\left(x-8\right)\sqrt{x+4}+C \\
\text{u substitution} \\
u=x+4 \ \ \ du=dx \ \ \ x=u-4 \\
\text{then} \\
I=3\int \frac{u-4}{\sqrt{u}} \ du
= 3\int {u}^{1/2}du -12\int {u}^{-1/2}\\
\text{integrate and back substitute } \\
I=\left[\frac{{6u}^{3/2}}{3}-\frac{{u}^{1/2}}{3}\right]
\implies 2\left(x+4\right)^{3/2}- 24\sqrt{x+4} \\
\text{simplify} \\
I= 2\left(x-8\right)\sqrt{x+4}+C \\
\text{not sure if trig substitution would have better?} $$
$\tiny\text
{from Surf the Nations math study group}$
🏄 🏄 🏄 🏄🏄
 
Physics news on Phys.org
Re: LCC 206 {r3} integrarl rational expression

karush said:
$\tiny\text{LCC 206 {r3} integrarl rational expression}$
$$\displaystyle
I=\int \frac{3x}{\sqrt{x+4}}\,dx
=2\left(x-8\right)\sqrt{x+4}+C \\
\text{u substitution} \\
u=x+4 \ \ \ du=dx \ \ \ x=u-4 \\
\text{then} \\
I=3\int \frac{u-4}{\sqrt{u}} \ du
= 3\int {u}^{1/2}du -12\int {u}^{-1/2}\\
\text{integrate and back substitute } \\
I=\left[\frac{{6u}^{3/2}}{3}-\frac{{u}^{1/2}}{3}\right]
\implies 2\left(x+4\right)^{3/2}- 24\sqrt{x+4} \\
\text{simplify} \\
I= 2\left(x-8\right)\sqrt{x+4}+C \\
\text{not sure if trig substitution would have better?} $$
$\tiny\text
{from Surf the Nations math study group}$
🏄 🏄 🏄 🏄🏄

I think you have used the most concise method. Well done :)
 
karush said:
$$\displaystyle
I=\int \frac{3x}{\sqrt{x+4}}\,dx
=2\left(x-8\right)\sqrt{x+4}+C \\
\text{u substitution} \\
u=x+4 \ \ \ du=dx \ \ \ x=u-4 \\
\text{then} \\
I=3\int \frac{u-4}{\sqrt{u}} \ du
= 3\int {u}^{1/2}du -12\int {u}^{-1/2}\\
\text{integrate and back substitute } \\
I=\left[\frac{{6u}^{3/2}}{3}-\frac{{u}^{1/2}}{3}\right]
\implies 2\left(x+4\right)^{3/2}- 24\sqrt{x+4} \\
\text{simplify} \\
I= 2\left(x-8\right)\sqrt{x+4}+C \\
\text{not sure if trig substitution would have better?} $$
Trig substitution is appropriate when we have functiions
with the forms: u^2 - a^2,\;u^2+a^2,\;a^2-u^2

If there is a linear function under the radical,
I often let u equal the entire radical
.
\text{Let }u \;=\;\sqrt{x+4}\quad\Rightarrow\quad x \,=\,u^2-4 \quad\Rightarrow\quad du \,=\,2u\,du

\text{Substitute: }\;\int \frac{3(u^2-4)\cdot 2u\,du}{u} \;=\;6\int(u^2-4)\,du

. . . =\;\;6\left(\frac{u^3}{3} - 4u\right) + C \;\;=\;\;2u^3 - 24u + C \;\;=\;\;2u(u^2-12) + C

\text{Back-substitute: }\;2\sqrt{x+4}(x+4-12) + C \;\;=\;\; 2\sqrt{x+4}(x-8)+C


 
$$\int\dfrac{3x}{\sqrt{x+4}}\,dx$$

$$x=4\sinh^2(u),\quad u=\sinh^{-1}\left(\dfrac{\sqrt x}{2}\right)$$

$$dx=8\sinh(u)\cosh(u)\,du$$

$$\int\dfrac{3\cdot4\sinh^2(u)\cdot8\sinh(u)\cosh(u)\,du}{2\cosh(u)}$$

$$=48\int\sinh^3(u)\,du=48\int(\cosh^2(u)-1)\sinh(u)\,du$$

$$w=\cosh(u),\quad dw=\sinh(u)\,du$$

$$48\int w^2-1\,dw=16w^3-48w+C$$

$$(*)\,\Leftrightarrow16w^3-48w\Rightarrow16\left(\dfrac{\sqrt{x+4}}{2}\right)^3-24\sqrt{x+4}+C$$

$$\int\dfrac{3x}{\sqrt{x+4}}\,dx=2(x-8)\sqrt{x+4}+C$$

$(*)$ Recall that $\cosh\left(\sinh^{-1}(z)\right)=\sqrt{z^2+1}$.
 
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...

Similar threads

Replies
5
Views
2K
Replies
3
Views
1K
Replies
7
Views
2K
Replies
2
Views
1K
Replies
2
Views
2K
Replies
4
Views
1K
Replies
2
Views
1K
Replies
3
Views
2K
Back
Top