- #106
PWiz
- 695
- 116
Yes, but again it should be no surprise that this works - the velocity addition formula is derived from the Lorentz transformation, which in turn is based on the premise that ##c## is constant for all inertial observers. It's essentially a "reverse" argument.Stephanus said:And if a rocket travels at 0.6c for example and it shine a laser at the front,
so the speed of the laser plus the speed of the rocket is...
##\frac{r+l}{1+(r*l)/c^2}##
r is the speed of the rocket
l is the speed of the laser, which is equal to the speed of light
c is the speed of light.
So we can rewrite the formula into...
##\frac{r+c}{1+(r*c)/c^2} = \frac{r+c}{1+r/c} = \frac{r+c}{c/c+r/c} = \frac{r+c}{(r+c)/c} = c*\frac{r+c}{r+c} = c##
Is that so?
Yes, that's correct.Stephanus said:I mean from the ground observer, the speed of sound is this?
##\frac{s+p}{1+(s*p)/c^2}##
S: the speed of sound
P: the speed of plane
C: the speed of light