MHB Liapunov function (扁頭科學's question at Yahoo Answers)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Function
AI Thread Summary
A suitable Lyapunov function of the form ax^2 + cy^2 can be constructed to analyze the stability of the critical point at the origin for the given differential equations. By evaluating the function with a = c = 1, the derivative L_v(f)(x,y) results in a negative expression, indicating that the function is a strict Lyapunov function. This confirms that the origin is asymptotically stable. The analysis shows that the chosen Lyapunov function effectively demonstrates the stability of the system. Therefore, the critical point at the origin is proven to be asymptotically stable.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Construct a suitable Liapunov function of the form ax^2+cy^2,
where a and c are to be determined. Then show that the critical
point at the origin is of the indicated type.
1. dx/dt = -x^3+xy^2, dy/dt = -2x^2y-y^3; asymptotically stable

Here is a link to the question:

Differential equation (Liapunov function)? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello 扁頭科學,

If $f(x,y)=ax^2+cy^2$, then: $$L_v(f)(x,y)=\nabla f(x,y)\cdot (v_1,v_2)=(2ax,2cy)\cdot (-x^3+xy^2,-2x^2y-y^3)=\\-2ax^4+2ax^2y^2-4cx^2y^2-2cy^4$$ If $a=c=1$, we get $L_v(f)(x,y)=-2(x^4+x^2y^2+y^4)<0$ for all $(x,y)\ne (0,0)$. This means that $f$ is a Strict Lyapunov Function at $(0,0).$ As a consequence, $(0,0)$ is asymptotically stable.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top