MHB Limit of (n)^(1/n)/n as n approaches infinity

  • Thread starter Thread starter Dethrone
  • Start date Start date
  • Tags Tags
    Limit
AI Thread Summary
The discussion focuses on determining the limit of (n!)^(1/n)/n as n approaches infinity. Participants share various methods to solve the problem, with one user expressing appreciation for another's solution. Hints are provided for those who prefer not to use Stirling's approximation. The conversation highlights a collaborative effort to explore mathematical solutions. Overall, the thread emphasizes problem-solving techniques in calculus.
Dethrone
Messages
716
Reaction score
0
Determine $$\lim_{{n}\to{\infty}}\frac{(n!)^{1/n}}{n}$$
 
Mathematics news on Phys.org
Rido12 said:
Determine $$\lim_{{n}\to{\infty}}\frac{(n!)^{1/n}}{n}$$

By the continuity of the natural logarithm and using Stirling's approximation, we find that:
$$\ln \left [ \lim_{n \to \infty} \frac{(n!)^{\frac{1}{n}}}{n} \right ] = \lim_{n \to \infty} \ln \frac{(n!)^{\frac{1}{n}}}{n} = \lim_{n \to \infty} \left [ \frac{\ln{n!}}{n} - \ln{n} \right ] = \lim_{n \to \infty} \left [ \left ( \ln{n} + O \left ( \frac{\ln{n}}{n} \right ) - 1 \right ) - \ln{n} \right ] = -1$$
Therefore it follows that:
$$\lim_{n \to \infty} \frac{(n!)^{\frac{1}{n}}}{n} = e^{-1} = \frac{1}{e}$$
 
Excellent solution Bacterius! Thanks for participating. :D

For anyone who wants to tackle this without Stirling's approximation, I have a few hints:

Use the fact that, assuming $f$ is non-negative and increasing:
$$\sum_{k=1}^{n-1}f(k)\le\int_1^nf(x) \,dx\le\sum_{k=1}^{n}f(k)$$

and apply it to $\ln(x)$ to get $en^ne^{-n}<n!<en^{n+1}e^{-n}$.
 
Here is my method:

If $a_n = \frac{(n!)^{1/n}}{n}$, then

$$a_n = \sqrt[n]{\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right)\cdots \left(1 - \frac{n-1}{n}\right)} = \exp\left\{\frac{1}{n}\sum_{k = 0}^{n-1}\log\left(1 - \frac{k}{n}\right)\right\},$$

which converges to

$$\exp\left\{\int_0^1 \log(1 - x)\, dx\right\} = \exp\left\{\int_0^1\log x\, dx\right\} = \exp(-1) = \frac{1}{e}.$$
 
Hi Euge! Very interesting solution, excellent job! (Cool)

$$\sum_{k}^{n-1}\ln k \le\int_{1}^{n} \ln x\,dx \le \sum_{k=1}^{n}\ln k$$
$$\implies \ln(n-1)! \le n \ln n-n+1 \le \ln n!$$

On the left hand side, it can be shown that $\ln(n-1)! \le n\ln n -n+1 \implies n! \le n^{n+1}e^{-n}e$ and on the right hand side, $n \ln n-n+1 \le \ln n! \implies n^ne^{-n}\le n!$.

$$n^ne^{-n}e \le n! \le n^{n+1}e^{-n}e$$$$\implies\frac{e^{1/n}}{e}\le \frac{(n!)^{1/n}}{n} \le \frac{e^{1/n}n^{1/n}}{e}$$

Furthermore, $\lim_{{n}\to{\infty}}a^{1/n}=1$ and $\lim_{{n}\to{\infty}}n^{1/n}=1$, so by the squeeze theorem,
$$\lim_{{n}\to{\infty}}\frac{(n!)^{1/n}}{n}=\frac{1}{e}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top