I Limit of the product of these two functions

LagrangeEuler
Messages
711
Reaction score
22
If we have two functions ##f(x)## such that ##\lim_{x \to \infty}f(x)=0## and ##g(x)=\sin x## for which ##\lim_{x \to \infty}g(x)## does not exist. Can you send me the Theorem and book where it is clearly written that
\lim_{x \to \infty}f(x)g(x)=0
I found that only for sequences, but it should be correct for functions also.
 
Physics news on Phys.org
LagrangeEuler said:
If we have two functions ##f(x)## such that ##\lim_{x \to \infty}f(x)=0## and ##g(x)=\sin x## for which ##\lim_{x \to \infty}g(x)## does not exist. Can you send me the Theorem and book where it is clearly written that
\lim_{x \to \infty}f(x)g(x)=0
I found that only for sequences, but it should be correct for functions also.
If ##g## is any bounded function then there is a straightforward epsilon-delta proof.
 
|f(x)g(x)| is bounded by |f(x)| goes to 0
 
I don't know of a specific place that states this exact problem, but this is an application of the Squeeze theorem which can be found in any calculus textbook.
 
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...
Back
Top