Linear Algebra II - Change of Basis

lemonsare
Messages
3
Reaction score
0

Homework Statement



From Linear Algebra with applications 7th Edition by Keith Nicholson.
Chapter 9.2 Example 2.

Let T: R3 → R3 be defined by T(a,b,c) = (2a-b,b+c,c-3a).
If B0 denotes the standard basis of R3 and B = {(1,1,0),(1,0,1),(0,1,0)}, find an invertible matrix P such that P-1MB0(T)P=MB(T).

Homework Equations




The Attempt at a Solution



I know to find P, I have to first find MB0(T) and MB(T).

MB0(T) is easy because I have to just find each a, b, and c as linear combinations of B0 and the coefficients are MB0(T).

However, I'm not sure how to find MB(T). In the textbook, they write:

MB(T) = [CB(1,1,-3) CB(2,1,-2) CB(-1,1,0)]

I cannot figure out where they came up with these numbers (1,1,-3), (2,1,-2), and (-1,1,0).

Please help. Thank you!

 
Physics news on Phys.org
##M_B(T) ## is the 3x 3 matrix where the columns are the result of T on each of the basis vectors.
T(1,1,0) = (1,1,-3).
So your matrix will look like:
##\begin{bmatrix} 1& 2& -1 \\ 1& 1& 1 \\ -3 & -2 & 0 \end{bmatrix}##
 
Oh wow thanks! That was simple.

But in the textbook ##M_B(T)## = ##\begin{bmatrix} 4&4&-1\\-3&-2&0\\-3&-3&2\end{bmatrix}##

From trying to figure out where (1,1,-3) came from, I figured out that (4,-3,-3) came from the coefficients of the linear combination of each of the basis vectors. But is that wrong?
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top