- #1
awef33
- 2
- 0
Let V be a vector space and let T: V [tex]\rightarrow[/tex] V be a linear transformation. Suppose that n and k are positive integers.
(a) If w [tex]\in[/tex] V such that T[tex]^{k}[/tex](w)[tex]\neq[/tex]0 and T[tex]^{k+1}[/tex](w)=0, must {w, T(w),...,T[tex]^{k}[/tex](w)} be linearly independent?
(b) Assuming that w [tex]\in[/tex] V such that T[tex]^{k}[/tex](w)[tex]\neq[/tex]0 and T[tex]^{k+1}[/tex](w)=0. Let W be the subspace of V spanned by {w, T(w),...,T[tex]^{k}[/tex](w)}. If v is a member of V such that T[tex]^{n}[/tex](v)[tex]\notin[/tex]W and T[tex]^{n+1}[/tex](v)[tex]\in[/tex]W, must {w, T(w),...,T[tex]^{k}[/tex](w),v,T(v),...,T[tex]^{n}[/tex](v)} be linearly independent? Explain.
(a) If w [tex]\in[/tex] V such that T[tex]^{k}[/tex](w)[tex]\neq[/tex]0 and T[tex]^{k+1}[/tex](w)=0, must {w, T(w),...,T[tex]^{k}[/tex](w)} be linearly independent?
(b) Assuming that w [tex]\in[/tex] V such that T[tex]^{k}[/tex](w)[tex]\neq[/tex]0 and T[tex]^{k+1}[/tex](w)=0. Let W be the subspace of V spanned by {w, T(w),...,T[tex]^{k}[/tex](w)}. If v is a member of V such that T[tex]^{n}[/tex](v)[tex]\notin[/tex]W and T[tex]^{n+1}[/tex](v)[tex]\in[/tex]W, must {w, T(w),...,T[tex]^{k}[/tex](w),v,T(v),...,T[tex]^{n}[/tex](v)} be linearly independent? Explain.