MHB Linear differential equations with constants coefficients

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Each element of the ring $\mathbb{C}[z, e^{\lambda z} \mid \lambda \in \mathbb{C}]$ is of the form $\displaystyle{\sum_{k=1}^n α_kz^{d_k}e^{β_kz}}$.

A differential equation in this ring is of the form $$Ly = \sum_{k=0}^m \alpha_k y^{(k)}(z)=\sum_{l=1}^n C_lz^{d_l} e^{\beta_l z} , \ \ \alpha_k , \beta_l \in \mathbb{C} \ \ \ \ (*)$$

At the linear differential equations we can apply the superposition principle. That means that we can split the problem $(*)$ into the subproblems $$Ly(z)=0, \ \ Ly(z)=C_lz^{d_l} e^{\beta_l z}, \ \ l=1, 2, \dots , n$$ so into an homogeneous and $n$ non-homogeneous equations. We solve these equations and then we add the solution of the homogeneous $y_{H}(z)$ and the solutions $y_{p_i}(z)$of the $n$ non-homogeneous equations.
So we get the general solution of the equation $(*)$, which is $$y(z)=y_{H}(z)+\sum_{l=1}^n y_{p_i}(z)$$

To solve the homogeneous equation $$\sum_{k=0}^m \alpha_k y^{(k)}(z)=0$$ we find the characteristic equation and its eigenvalues $\lambda_1, \dots , \lambda_m$.

  • If $\lambda_1, \dots , \lambda_m$ are eigenvalues of multiplicity $1$, then the solution of $Ly(z)=0$ is $$y_{H}(z)=\sum_{i=1}^m c_i e^{\lambda_i z}.$$
  • If $\lambda_i$ is an eigenvalues of multiplicity $M>1$, then the $$e^{\lambda_i z}, ze^{\lambda_i z}, z^2e^{\lambda_i z}, \dots , z^{M-1}e^{\lambda_i z}$$ are $M$ linear independent solutions of $Ly(z)=0$.

To solve the equation $$\sum_{k=0}^m \alpha_k y^{(k)}(z)=C_lz^{d_l} e^{\beta_l z} \ \ \ \ \ (**)$$ we do the following:

  • If $\beta_l$ is not one of the eigenvalues:

    We suppose that the solution is in the ring $\mathbb{C}[z, e^{\lambda z} \mid \lambda \in \mathbb{C}]$, so it is of the form $$y(z)=e^{\beta_l z} x(z)$$

    So $$y^{(k)}(z)=\sum_{j=0}^k \binom{k}{j}\beta_l^j e^{\beta_l z}x^{(k-j)}(z)$$

    Substituting in $(**)$ we get the following equation, the order of which is the same as the order of $(**)$, $$\sum_{k=0}^m \beta_k x^{(k)}(z)=C_lz^{d_l}$$

    The solution of the above equation will be polynomials.

    The first non-zero term $\beta_k$ determines the degree of $x$.

    For example if $\beta_o \neq 0$ then the solution will have degree at most $l$, and will be of the form $$x(z)=\gamma_l z^l +\dots +\gamma_0$$
    Then $$x'(z)=l\gamma_l z^{l-1}+\dots +\gamma_1 \\ \dots \\ x^{(l)}(z)=l!\gamma_l$$

    Then $$\sum_{k=0}^m \beta_k x^{(k)}(z)=C_lz^{d_l} \Rightarrow \beta_o\gamma_kz^{d_l}+(\beta_0\gamma_{l-1}+l\gamma_la_1)z^{d_l-1}+ \dots =C_lz^{d_l} $$

    So it must stand $$\beta_0\gamma_l=C_l \Rightarrow \gamma_l=\frac{C_l}{\beta_0} \\ \beta_0\gamma_{l-1}+l\gamma_la_1=0 \\ \dots $$

    So to solve the differential equation we have to solve the above system.

    We write this in the form of matrix. Can we be sure that we will find a unique solution? (Wondering)

    In this ring the number of solutions is equal to the number of the order, right? How can we justify that? (Wondering)
  • If $\beta_l$ is one of the eigenvalues $\lambda_i$, and the multiplicity of $\lambda_i$ is $L$:

    We suppose that the solution is in the ring $\mathbb{C}[z, e^{\lambda z} \mid \lambda \in \mathbb{C}]$, so it is of the form $$y(z)=z^L e^{\beta_l z} x(z)=e^{\beta_l z}\tilde{x}(z)$$ and we continue as in the previous case.
Is everything correct?

Could I improve something at the formulation? (Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
At first glance, all is ok, but need to read more carefully
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top