- #1
dl447342
- 28
- 5
- Homework Statement
- A slender rod is 0.8 m long and has mass 0.12 kg. A small 0.02 kg sphere is welded to one end of the rod, and a small 0.05 kg sphere is welded to the other end. The rod, pivoting about a stationary, frictionless axis at its center, is held horizontal and released from rest. What is the linear speed of the 0.05 kg sphere as it passes through its lowest point?
- Relevant Equations
- Moment of inertia of slender rod of mass M and length L: ##\frac{1}{12} ML^2##, work done by constant torque through an angular displacement ##\Delta \theta = \tau \Delta\theta##, work-kinetic energy theorem, work done by gravity when an object of mass m falls a vertical distance h is ##mg h##. Kinetic energy = ##\frac{1}2 I \omega^2##.
Let ##m_s = 0.05, m_{s_1} = 0.02, m_r = 0.12, L = 0.8.## be the masses of the two spheres, mass of the rod, and length of the rod. Then the work done by gravity when the rod reaches the vertical position is ##(m_s(L/2) - m_{s_2}(L/2))g## and the kinetic energy equals ##\frac{1}2 (\frac{1}{12} m_rL^2 + \frac{L^2}4 (m_s+m_{s_2}))(\omega_f^2)##, where ##\omega_f## is the final angular speed. If I treat the work done by torque as zero, then I get the correct answer of ##\omega_f = 3.656 rad/s\Rightarrow v_f = 1.46 m/s##, but I thought the work done by torque should be ##\frac{L(m_s-m_{s_2})}2\cdot 9.8##. Why would the torque be zero or is some other quantity different from what I calculated?