A "Looks" of gravitational wave emissions for an eclipsing ternary compact object?

  • A
  • Thread starter Thread starter snorkack
  • Start date Start date
snorkack
Messages
2,388
Reaction score
536
How would a tight (tight enough that the inner pair is "visible" as a source of gravitational waves) eclipsing ternary system of compact objects (all three being black holes or neutron stars) "look" like in gravitational waves?
Even if it is unlikely to happen in real astronomy (I can see some reasons why it might be unlikely), it should be legitimate as a thought experiment.
For non-compact triply eclipsing stars, see:
https://www.azoquantum.com/News.aspx?newsID=10522
with a quote:
Study Co-Author Tamás Borkovits, a Senior Research Fellow at the Baja Observatory of The University of Szeged in Hungary, added, “Before scientists discovered triply eclipsing triple star systems, we didn’t expect them to be out there.
So about the compact ones...
When a black hole passes in front of a background gravitational wave source, would it cause gravitational lensing of the gravitational waves?
Would the gravitational waves that encounter the event horizon of a black hole be absorbed by the black hole just like light?
Depending on the size of the third hole vs. orbital size of the pair, the wavelength of the gravitational waves could be bigger than the third hole. Can the gravitational waves diffract off the gravitational lens of the third hole? Can the waves passing the lens by different paths undergo interference?
If the third compact object is a neutron star rather than black hole, can gravitational waves pass through the centre of the black hole like they do not pass the event horizon? Would the gravitational waves interact with gravitational lens alone, or at neutron star densities, would there be any noticeable attenuation of gravitational waves by matter (absorption or scattering)?
 
Last edited:
Physics news on Phys.org
snorkack said:
If the third compact object is a neutron star rather than black hole, can gravitational waves pass through the centre of the black hole like they do not pass the event horizon?
Missed to correct it - centre of the neutron star. A neutron star should be a fairly strong gravitational lens, like the outskirts of a black hole - but the neutron star interior might have the waves passing directly through the interior, while black hole event horizon might absorb gravitational waves.
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Thread 'Relativity of simultaneity in actuality'
I’m attaching two figures from the book, Basic concepts in relativity and QT, by Resnick and Halliday. They are describing the relativity of simultaneity from a theoretical pov, which I understand. Basically, the lightning strikes at AA’ and BB’ can be deemed simultaneous either in frame S, in which case they will not be simultaneous in frame S’, and vice versa. Only in one of the frames are the two events simultaneous, but not in both, and this claim of simultaneity can be done by either of...
Back
Top