- #1,051
- 24,775
- 792
http://arxiv.org/abs/0912.4563
From time to timescape - Einstein's unfinished revolution
David L. Wiltshire
13 pages, 3 figures; A runner-up in the 2008 FQXi Essay Contest on the Nature of Time; Int. J. Mod. Phys. D 18
(Submitted on 23 Dec 2009)
"I argue that Einstein overlooked an important aspect of the relativity of time in never quite realizing his quest to embody Mach's principle in his theory of gravity. As a step towards that goal, I broaden the Strong Equivalence Principle to a new principle of physics, the Cosmological Equivalence Principle, to account for the role of the evolving average regional density of the universe in the synchronisation of clocks and the relative calibration of inertial frames. In a universe dominated by voids of the size observed in large-scale structure surveys, the density contrasts of expanding regions are strong enough that a relative deceleration of the background between voids and the environment of galaxies, typically of order 10-10 m/s2, must be accounted for. As a result one finds a universe whose present age varies by billions of years according to the position of the observer: a timescape. This model universe is observationally viable: it passes three critical independent tests, and makes additional predictions. Dark energy is revealed as a mis-identification of gravitational energy gradients and the resulting variance in clock rates. Understanding the biggest mystery in cosmology therefore involves a paradigm shift, but in an unexpected direction: the conceptual understanding of time and energy in Einstein's own theory is incomplete."
http://arxiv.org/abs/0912.4581
Five-dimensional metric f(R) gravity and the accelerated universe
Biao Huang, Song Li, Yongge Ma
14 pages, 9 figures
(Submitted on 23 Dec 2009)
"The metric f(R) theories of gravity are generalized to five-dimensional spacetimes. By assuming a hypersurface-orthogonal Killing vector field representing the compact fifth dimension, the five-dimensional theories are reduced to their four-dimensional formalism. Then we study the cosmology of a special class of [tex]f(R)=\alpha R^m[/tex] models in a spatially flat FRW spacetime. It is shown that the parameter m can be constrained to a certain range by the current observed deceleration parameter, and its lower bound corresponds to the Kaluza-Klein theory. It turns out that both expansion and contraction of the extra dimension may prescribe the smooth transition from the deceleration era to the acceleration era in the recent past as well as an accelerated scenario for the present universe. Hence five-dimensional f(R) gravity can naturally account for the present accelerated expansion of the universe. Moreover, the models predict a transition from acceleration to deceleration in the future, followed by a cosmic recollapse within finite time. This differs from the prediction of the five-dimensional Brans-Dicke theory but is in consistent with a recent prediction based on loop quantum cosmology."
Last edited: