Lorentz Transformation of y-velocity

AI Thread Summary
The discussion centers on transforming the y-velocity of a particle moving along the y'-axis in a rocket frame to the laboratory frame using Lorentz transformation equations. Participants note that the textbook lacks clarity and examples, leading to confusion in applying the transformations. The correct approach involves using the relativistic Velocity Addition Theorem, particularly since the rocket moves along the x-axis in the laboratory frame. Key equations include Vx = V rel and Vy = Vy'(1-Vrel^2)^0.5, which are derived under the assumption of the rocket's motion. Overall, the conversation highlights the need for precise definitions in physics problems to avoid misinterpretation.
muffinbottoms
Messages
2
Reaction score
0

Homework Statement



A Particle moves with uniform speed V'y = Δy'/Δt' along the y'-axis of the rocket frame. Transform Δy' and Δt' to laboratory displacements Δx, Δy, and Δt using the Lorentz transformation equations. Show that the x-component and the y-component of the velocity of this particle in the laboratory frame are given by the expressions ... (under relevant equations)

Homework Equations



Vx = V rel
Vy = Vy'(1-Vrel^2)^.5


The Attempt at a Solution



Okay so the textbook i got this problem from is lacking in both directions and example problems. This is what I have so far..

x = x' because the particle is moving along the y-axis
z=z'

Δt = vγy' + γt
Δx = x'
Δy= γy' + Vγt'
 
Physics news on Phys.org
or is it that
t' = -Vrelγy+γt = γ(-Vrel(y)+t)
y' = γy-Vrelγt = γ(y-Vrel(t))

how should i continue?
 
muffinbottoms said:

Homework Statement



A Particle moves with uniform speed V'y = Δy'/Δt' along the y'-axis of the rocket frame. Transform Δy' and Δt' to laboratory displacements Δx, Δy, and Δt using the Lorentz transformation equations. Show that the x-component and the y-component of the velocity of this particle in the laboratory frame are given by the expressions ... (under relevant equations)

Homework Equations



Vx = V rel
Vy = Vy'(1-Vrel^2)^.5


The Attempt at a Solution



Okay so the textbook i got this problem from is lacking in both directions and example problems. This is what I have so far..

x = x' because the particle is moving along the y-axis
z=z'

Δt = vγy' + γt
Δx = x'
Δy= γy' + Vγt'

The relevant equations are not correct. If the particle is moving relative to the rocket, and the rocket is moving relative to the laboratory, then you have to use the relativistic Velocity Addition Theorem to get the velocity of the particle relative to the laboratory.
 
I was able to get the given expressions by assuming that the rocket moves only along the x-axis in the laboratory frame with relative speed v_rel, as suggested by v_x = v_rel, though the fault is on the book for not mentioning that specifically, thus forcing you to assume that the relative velocity could be in any direction.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top