Lower bounds on energy eigenvalues

jfy4
Messages
645
Reaction score
3
Hi,
I'm interested in learning about what would be the compliment to the Variational method. I'm aware that the Variational method allows one to calculate upper bounds, but I'm wondering about methods to calculate lower bounds on energy eigenvalues. And for energies besides the ground state if such methods exist.

Are there methods to calculate lower bounds on energy eigenvalues (the ground state and higher)?

Thanks,
 
Physics news on Phys.org
The lower bound for an energy spectrum is provided by the Uncertainty principle. You should just be able to use it properly. I think with a little thought, you can use it to find the lower bound for any state but it can't be generally formulated and is different for each case.
About finding the energy upper bound for states other than the ground state. For the ground state, you just guess(it can be an educated guess) a wave function and calculate the Hamiltonian's expectation value in that state and minimize it.
For the first excited state, you should again guess a wave function, but this time, you have the condition that this wave function should be orthogonal to the one you chose for the ground state. Then you do the same thing as the last case.
For second excited state, the wave function you guess should be orthogonal to the last two wave functions and so on.
 
Shyan said:
The lower bound for an energy spectrum is provided by the Uncertainty principle. You should just be able to use it properly. I think with a little thought, you can use it to find the lower bound for any state but it can't be generally formulated and is different for each case.
About finding the energy upper bound for states other than the ground state. For the ground state, you just guess(it can be an educated guess) a wave function and calculate the Hamiltonian's expectation value in that state and minimize it.
For the first excited state, you should again guess a wave function, but this time, you have the condition that this wave function should be orthogonal to the one you chose for the ground state. Then you do the same thing as the last case.
For second excited state, the wave function you guess should be orthogonal to the last two wave functions and so on.

Thanks for your response. You already taught me something! However, I was thinking more along the lines of something like Temple's inequality. An inequality relation using expectation values of the Hamiltonian. I have been trying to find something similar for other energies besides the ground state.
 
I don't know about that inequality so I can't help.
 
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Back
Top