MHB Mark's question at Yahoo Answers (Linear recurrence relation)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Recurrence Relation
AI Thread Summary
The discussion centers on solving a second-order homogeneous linear recurrence relation and determining the conditions for boundedness of the sequence. The general solution is derived using the auxiliary equation, yielding roots that indicate boundedness depends on the coefficient C2 being zero. It is established that the sequence is bounded if and only if the initial conditions satisfy x0 = 3x1. A participant clarifies a calculation error regarding the roots of the auxiliary equation, confirming that the correct roots are -2 and 1/2. The conversation concludes with a request for resources on quadratic equations.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question
Question - Find the general solution to the 2nd order homogeneous linear recurrence below, and give a necessary and sufficient condition on u0 and u1 such that the sequence defined by the recurrence is bounded.

2*x subscript(n + 1) + 3*x subscript (n) -2*x subscript (n-1) = 0

I've found the general solution using the auxiliary equation, but I'm not sure how to prove it's bounded. I know that if a sequence converges, it means that it is bounded, but I have no clue how to show whether a recurrent sequence converges. Any help will be greatly appreciated!

Here is a link to the question:

2nd order homogeneous linear recurrence? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Mark,

From $2\lambda^2+3\lambda-2=0$ we get $\lambda=\dfrac{1}{3}$ and $\lambda=-\dfrac{4}{3}$ so, the general solution is $$x_n=C_1\left( \dfrac{1}{3}\right)^n+C_2\left(\dfrac{-4}{3}\right)^n$$ As $|1/3|<1$ $C_1(1/3)^n\to 0$ that is, $C_1(1/3)^n$ is bounded. Taking into account that $|-4/3|>1$, the sequence $C_2(-4/3)^n$ is bounded if and only if $C_2=0$, as a consequence $x_n$ is bounded if and only if $C_2=0$. Now, for $n=0$ and for $n=1$ $$\left \{ \begin{matrix} x_0=C_1+C_2\\x_1=\dfrac{C_1}{3}-\dfrac{4C_2}{3}\end{matrix}\right.$$

But $C_2=0$ if and only if $x_0=3x_1$ (necessary and sufficient condition on $x_0$ and $x_1$ such that the sequence defined by the recurrence relation is bounded).

Edit: See the following posts.
 
Last edited:
Thank you So much for your reply, I've perfectly understood how to solve it now! Just one quick question though, shouldn't the roots of the auxiliary equation be -2 and 1/2? It's not a big deal as the concept remains the same, but I just wanted to confirm whether it was a calculation mistake on your part or have I solved the auxiliary equation wrong.

Thank you very much once again!
 
You are correct, the characteristic roots are indeed:

$\displaystyle \lambda=-2,\,\frac{1}{2}$
 
TheAvenger said:
Thank you So much for your reply, I've perfectly understood how to solve it now! Just one quick question though, shouldn't the roots of the auxiliary equation be -2 and 1/2? It's not a big deal as the concept remains the same, but I just wanted to confirm whether it was a calculation mistake on your part or have I solved the auxiliary equation wrong.

Thank you very much once again!

All right, the concept remains the same. Out of curiosity, my mistake: $$\lambda=\dfrac{-3\pm \sqrt{9+16}}{2\cdot \color{red}3}$$ I looked at $3$ instead of $2$!

P.S. Does anyone know about a quadratic equation's tutorial? :)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top