- #1
dedocta
- 11
- 2
- TL;DR Summary
- Playing around with a dark matter theory, noticed (mass of obs Universe / distance squared) approaches unity
I was playing around with a theory that dark matter was behind the opaque wall of the early universe, as gravity would not be opaque.
Not sure if the numbers fit yet, but one odd thing I calculated was the distance squared of 46 billion light years, as the mass of the early universe, by time, is interacting with us via a thin shell beyond the darkness due to the decreased volume of the Universe ~1 million years in.
Anyways, the number comes out to 1.89*10^53 m^2, while the mass of the observable Universe is estimated to be ~1.5*10^53 kg. m/d^2 would approach unity based off of our mass estimates of the Universe.
Is there any reason those numbers come out like that, or is it mere coincidence?
Not sure if the numbers fit yet, but one odd thing I calculated was the distance squared of 46 billion light years, as the mass of the early universe, by time, is interacting with us via a thin shell beyond the darkness due to the decreased volume of the Universe ~1 million years in.
Anyways, the number comes out to 1.89*10^53 m^2, while the mass of the observable Universe is estimated to be ~1.5*10^53 kg. m/d^2 would approach unity based off of our mass estimates of the Universe.
Is there any reason those numbers come out like that, or is it mere coincidence?