Mass loss in common chemical reactions?

AI Thread Summary
In discussions about energy-releasing chemical reactions, such as the formation of water from hydrogen and oxygen, it's clarified that ordinary chemical reactions do not convert subatomic particles into energy. Instead, mass is conserved, with any mass change being negligible and difficult to measure. The concept of binding energy is crucial here; it refers to the energy required to separate electrons from atoms, which explains why the mass of a compound like water is slightly less than the sum of its constituent elements. This binding energy, when calculated using Einstein's equation E=mc², illustrates that while mass is conserved in chemical reactions, there is a minuscule conversion of mass to energy. The definition of binding energy remains consistent, emphasizing the difference between the mass of free neutrons and protons versus those in a nucleus.
BarnRat
Messages
26
Reaction score
0
In any common chemical reaction that releases energy, say the reaction 2H2 + O2 = 2H2O, what mass is converted to energy via the E = MC2 equation? What sub-atomic particles are converted to energy during ordinary chemical reactions? I was taught us in HS and under-grad chemistry classes that mass is conserved in chemical reactions but I've read lately in Relativity Theory that it is mass-energy that is conserved. So, chemical reactions that release energy are converting a very small amount of mass to energy in the same, but opposite, manner that a substance warmed by sunlight is actually gaining mass.
 
Chemistry news on Phys.org
BarnRat said:
In any common chemical reaction that releases energy, say the reaction 2H2 + O2 = 2H2O, what mass is converted to energy via the E = MC2 equation? What sub-atomic particles are converted to energy during ordinary chemical reactions?
Your second question first: None. Ordinary chemical reactions don't do that. Ordinary chemical reactions, even a highly reactive one, barely change the mass at all. As far as chemists are concerned, mass is conserved. Unless one is extremely careful and precise in measuring mass, the change in mass is immeasurably small in chemical reactions. (There is a change; it's just very small.)

Since subatomic particles are *NOT* destroyed, what does change?

The answer lies in binding energy. It takes a good deal of energy to strip all of the electrons from an atom. The amount of energy needed is the binding energy, and it is by this quantity (divided by the speed of light squared) that that the combined mass of a bare nucleus and the freed electrons exceeds the mass of the neutral atom. For example, the mass of a neutral hydrogen atom is slightly less than the sum of the masses of a proton and an electron.

The same concept applies to chemical compounds. That binding energy released when hydrogen and oxygen ignite to form water means that water is slightly (very slightly) less massive than the constituent oxygen and hydrogen molecules.
 
Last edited:
Thank you for the great answer! Much appreciated.
 
Have they changed the definition of binding energy?

I learned, many years ago that

Binding energy is the difference between the sum of the masses of neutrons and protons in the free state and the masses of the same number of neutrons and protons in a nucleus.

(Semat page 85)

Also the masses of the electrons are the same in an atom and free so cancel out.

Semat gives the folowing example: in atomic mass units

Lithium = 7.01822

4 Neutrons = 4 x 1.008987 = 4.03595
3 Protons = 3 x 1.008145 = 3.02444
total = 7.06039

The difference is the binding energy of 0.04217amu which can be equated to the binding energy by Einstein's equation.
 
Thread 'How to make Sodium Chlorate by Electrolysis of salt water?'
I have a power supply for electrolysis of salt water brine, variable 3v to 6v up to 30 amps. Cathode is stainless steel, anode is carbon rods. Carbon rod surface area 42" sq. the Stainless steel cathode should be 21" sq. Salt is pure 100% salt dissolved into distilled water. I have been making saturated salt wrong. Today I learn saturated salt is, dissolve pure salt into 150°f water cool to 100°f pour into the 2 gallon brine tank. I find conflicting information about brine tank...
Engineers slash iridium use in electrolyzer catalyst by 80%, boosting path to affordable green hydrogen https://news.rice.edu/news/2025/engineers-slash-iridium-use-electrolyzer-catalyst-80-boosting-path-affordable-green Ruthenium is also fairly expensive (a year ago it was about $490/ troy oz, but has nearly doubled in price over the past year, now about $910/ troy oz). I tracks prices of Pt, Pd, Ru, Ir and Ru. Of the 5 metals, rhodium (Rh) is the most expensive. A year ago, Rh and Ir...
Back
Top