Master equation -> diffusion equation

AI Thread Summary
The discussion focuses on deriving the diffusion equation from the Master equation for a one-dimensional chain where particles can jump between adjacent states. The Master equation is presented, and the user attempts to express the change in density over time using finite differences. The key step involves recognizing that as the distance between chain links approaches zero, the finite difference approximates a second derivative, leading to the diffusion equation. Clarification is sought on the application of derivatives, particularly in the context of central differences, which ultimately aids in understanding the derivation. The conversation concludes with an acknowledgment of the clearer approach using central differences for better accuracy in the derivation process.
Mikhail_MR
Messages
17
Reaction score
0

Homework Statement


I am trying to understand the derivation of the diffusion equation from the Master equation for a 1D chain. We have an endless 1D discrete chain. State from ##n## can jump to ##n+1## and ##n-1## with equal probabilities. The distance between chain links is ##a##.

Homework Equations


Master equation: $$\frac{d\rho_n}{dt} = W\left(-2\rho_n + \rho_{n+1} + \rho_{n-1}\right)$$

The Attempt at a Solution


With ##\Delta n = 1## we have $$\frac{d\rho_n}{dt}=Wa^2 \frac{(\rho_{n-1}-\rho_n) + (\rho_{n+1}-\rho_n)}{(\Delta n)^2 a^2},$$ where we could write ##(\Delta n)^2 a^2 = (\Delta x)^2##, since ##na=x##. In limit ##\Delta x \rightarrow 0## we get $$\frac{d\rho_n}{dt} = Wa^2 \frac{\partial^2 \rho_n}{\partial x^2}$$.
Unfortunately, I can not understand the last step. The definition of a derivative is ##f(x_0+\Delta x) - f(x_0) /\Delta x##, but I do not understand how it is used here.

Any help would be appreciated.
 
Physics news on Phys.org
Using your definition (with brackets inserted correctly), what is the expression for dρ/dx at x0 = n-1? What is the expression at x0 = n? So what is d(dρ/dx)/dx ?
 
##d\rho/dx## would be ##\frac{\rho_n - \rho_{n-1}}{\Delta x}## at ##x_0=n-1## and ##\frac{\rho_{n+1} - \rho_{n}}{\Delta x}## at ##x_0=n##.
Then: $$d(d\rho/dx)dx= [(d\rho/dx)_{x_0=n} - (d\rho/dx)_{x_0=n-1}] / \Delta x$$. Oh, now I see it. Thank you!
 
A better way of doing this would be in terms of central differences: ##d\rho/dx## would be ##\frac{\rho_n - \rho_{n-1}}{\Delta x}## at ##x_0=n-1/2## and ##\frac{\rho_{n+1} - \rho_{n}}{\Delta x}## at ##x_0=n+1/2##
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top