Mastering Integrals: Tips and Tricks for Convergence and Divergence

  • Thread starter Thread starter JustaNickname
  • Start date Start date
  • Tags Tags
    Integrals
JustaNickname
Messages
4
Reaction score
0
Been a long time I had my integral class so I forgot almost everything I knew... I need to integrate to see if the serie converge (limn→∞ an = 0). Thus, there is a theorem of the integral, if you evaluate the limit of the integral of a serie when it tends to the infinite minus when x=1 you can determine if the serie is convergent or divergent...

I can`t find a way to start the problems:

1. limt→∞ ∫ [1, t] sin(1/x) dx
2. limt→∞ ∫ [1, t] xe^(-2x) dx
3. limt→∞ ∫ [1, t] 1/(1+x^(1/2)) dx

You can also dirrectly evaluate the limit when the serie tend to infinite but I haven't found any way to match with the answers... (1. Divergent 2. Convergent 3. Divergent)

The #1 when x tend to infinite, 1/x tend to zero thus sin(1/x) tend to zero also... The serie should be converging if so ??
The #2 should give me an integral like this one:

1/(-2)^2 (-2x-1)e^(-2x) + C
-1/4 * (2x+1)e^(-2x) + C

But you can see right away if you evaluate the integral that it tends to infinite which is not converging :frown:

For the two others I have no idea! Any help is welcome thanks!
 
Last edited:
Physics news on Phys.org
JustaNickname said:
Been a long time I had my integral class so I forgot almost everything I knew... I need to integrate to see if the serie converge (limn→∞ an = 0). Thus, there is a theorem of the integral, if you evaluate the limit of the integral of a serie when it tends to the infinite minus when x=1 you can determine if the serie is convergent or divergent...

I can`t find a way to start the problems:

1. limt→∞ ∫ [1, t] sin(1/x) dx
2. limt→∞ ∫ [1, t] xe^(-2x) dx
3. limt→∞ ∫ [1, t] 1/(1+x^(1/2)) dx

You can also dirrectly evaluate the limit when the serie tend to infinite but I haven't found any way to match with the answers... (1. Divergent 2. Convergent 3. Divergent)

The #1 when x tend to infinite, 1/x tend to zero thus sin(1/x) tend to zero also... The serie should be converging if so ??
x is not going to infinity. It is the upper limit on the integral that is going to infinity. x ranges from 1 to infinity in that integral.
The #2 should give me an integral like this one:
1/(-2)^2 (-2x-1)e^(-2x) + C
-1/4 * (2x+1)e^(-2x) + C

But you can see right away if you evaluate the integral that it tends to infinite which is not converging :frown:y

For the two others I have no idea! Any help is welcome thanks!
What you get for the integral is correct but, as t goes to infinity, it does NOT go to infinity. Why would you think it does?

For (3) let u= 1+ x^{1/2}
 
Just making sure I understand you correctly (I am natively speaking french).

The serie Ʃ∞n=1 ne^(-2n) = e^-2 + 2e^(-4) + ... + ne^(-2n)

I can clearly see here the serie is decreasing and convergent because it gets closer to a number since an > an+1.

I would like to prove it with the integral theorem but I can't find a way to make the limt→∞ ∫ [1, t] xe^(-2x) dx = 0 thus converging.
 
Quoting my notes:

If ∫[1,∞[ f(x) is convergent <=> Ʃ∞n=1 an is convergent where an = f(x)

So the goal is to prove the integral is convergent to find out if the serie is converging.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...

Similar threads

Replies
5
Views
2K
Replies
3
Views
1K
Replies
105
Views
5K
Replies
15
Views
2K
Replies
6
Views
2K
Replies
3
Views
7K
Replies
2
Views
1K
Back
Top