- #36
Couchyam
- 122
- 18
(11, 12, 16, 17, 24, 25)
Uniqueness of 'square roots'
The functional ##\mathcal{F}[g](x)=g(1-x)## exchanges the spaces of increasing and decreasing bijections and is its own inverse, and so ##G## consists of two topologically equivalent connected components, say ##G=G_+\cup G_-## (a path from ##\mathbb I(x)## to ##1-x## would violate continuity at the end points, but monotonic functions ##g(x)## of a given type are connected to either ##\mathbb I(x)=x## or ##1-x## through one-parameter flows, ##g_\lambda(x),\,\lambda\in\mathbb R,\,g_0(x)=x## or ##g_0(x)=1-x##, ##g_1(x)=g(x)##.)
Focusing on ##G_+##, the 'flows' can be defined in several ways. One approach is to first examine the square root operator alluded to in 17, and then define ##g_\lambda(x)## in terms of the binomial expansion of ##\lambda##.` Another (and perhaps more elegant) approach might involve concepts from density equalizing maps. First, it is necessary to prove that the 'square root' operator is uniquely determined on functions with positive derivative. For increasing ##g(x)##, with ##g(0)=0## and ##g(1)=1##, one conceptually straightforward (though somewhat messy) approach is to consider the equation
$$
f_{\frac{1}{2}}'(f_{\frac{1}{2}}(x))f_{\frac{1}{2}}'(x)=f'(x),\quad f_{\frac{1}{2}}(0)=0
$$
obtained from differentiating ##f_\frac{1}{2}(f_\frac{1}{2}(x))=f(x)##.
Suppose ##f_{\frac{1}{2}}(x)## has been defined on the interval ##[0,\epsilon]##. If ##f_{\frac{1}{2}}(\epsilon)>\epsilon##, let ##s## be the solution to ##f_{\frac{1}{2}}(s)=\epsilon##. Then ##f_{\frac{1}{2}}'(\epsilon)## can be determined from
$$
f_{\frac{1}{2}}'(\epsilon)=\frac{f'(s(\epsilon))}{f_\frac{1}{2}'(s(\epsilon))}.
$$
If instead ##f_\frac{1}{2}(\epsilon)<\epsilon##, then
$$
f_{\frac{1}{2}}'(\epsilon)=\frac{f'(\epsilon)}{f_\frac{1}{2}'(f_\frac{1}{2}(\epsilon))}
$$
Hence, we may write
$$
f_\frac{1}{2}(x)=\int_0^xdt\bigg[\theta(t-f_\frac{1}{2}(t))\frac{f'(t)}{f_\frac{1}{2}'(f_\frac{1}{2}(t))}+\theta(f_\frac{1}{2}(t)-t)\frac{f'(f_{-\frac{1}{2}}(t))}{f_\frac{1}{2}'(f_{-\frac{1}{2}}(t))}\bigg]
$$
where ##f_{-\frac{1}{2}}(x)## is the inverse of ##f_{\frac{1}{2}}##, or
$$
f_\frac{1}{2}(x)=\int_0^xdt\bigg[\frac{f'(\min(t,f_{-\frac{1}{2}}(t)))}{f_\frac{1}{2}'(\min(f_\frac{1}{2}(t),f_{-\frac{1}{2}}(t)))}\bigg]
$$
and so ##f_\frac{1}{2}(x)## is uniquely defined on ##G_+##.
Uniqueness of 'square roots'
fresh_42 said:The functions ##1## and ##x\longmapsto 1-x## are clearly involutions and since ##\left(f\iota f^{-1}\right)=f \iota^2 f^{-1}=1##, the involutions form a normal, infinite subgroup of ##G##. Of course ##f\iota f^{-1} \stackrel{i.g.}{\neq}f^{-1}\iota f\,.##
The functional ##\mathcal{F}[g](x)=g(1-x)## exchanges the spaces of increasing and decreasing bijections and is its own inverse, and so ##G## consists of two topologically equivalent connected components, say ##G=G_+\cup G_-## (a path from ##\mathbb I(x)## to ##1-x## would violate continuity at the end points, but monotonic functions ##g(x)## of a given type are connected to either ##\mathbb I(x)=x## or ##1-x## through one-parameter flows, ##g_\lambda(x),\,\lambda\in\mathbb R,\,g_0(x)=x## or ##g_0(x)=1-x##, ##g_1(x)=g(x)##.)
Focusing on ##G_+##, the 'flows' can be defined in several ways. One approach is to first examine the square root operator alluded to in 17, and then define ##g_\lambda(x)## in terms of the binomial expansion of ##\lambda##.` Another (and perhaps more elegant) approach might involve concepts from density equalizing maps. First, it is necessary to prove that the 'square root' operator is uniquely determined on functions with positive derivative. For increasing ##g(x)##, with ##g(0)=0## and ##g(1)=1##, one conceptually straightforward (though somewhat messy) approach is to consider the equation
$$
f_{\frac{1}{2}}'(f_{\frac{1}{2}}(x))f_{\frac{1}{2}}'(x)=f'(x),\quad f_{\frac{1}{2}}(0)=0
$$
obtained from differentiating ##f_\frac{1}{2}(f_\frac{1}{2}(x))=f(x)##.
Suppose ##f_{\frac{1}{2}}(x)## has been defined on the interval ##[0,\epsilon]##. If ##f_{\frac{1}{2}}(\epsilon)>\epsilon##, let ##s## be the solution to ##f_{\frac{1}{2}}(s)=\epsilon##. Then ##f_{\frac{1}{2}}'(\epsilon)## can be determined from
$$
f_{\frac{1}{2}}'(\epsilon)=\frac{f'(s(\epsilon))}{f_\frac{1}{2}'(s(\epsilon))}.
$$
If instead ##f_\frac{1}{2}(\epsilon)<\epsilon##, then
$$
f_{\frac{1}{2}}'(\epsilon)=\frac{f'(\epsilon)}{f_\frac{1}{2}'(f_\frac{1}{2}(\epsilon))}
$$
Hence, we may write
$$
f_\frac{1}{2}(x)=\int_0^xdt\bigg[\theta(t-f_\frac{1}{2}(t))\frac{f'(t)}{f_\frac{1}{2}'(f_\frac{1}{2}(t))}+\theta(f_\frac{1}{2}(t)-t)\frac{f'(f_{-\frac{1}{2}}(t))}{f_\frac{1}{2}'(f_{-\frac{1}{2}}(t))}\bigg]
$$
where ##f_{-\frac{1}{2}}(x)## is the inverse of ##f_{\frac{1}{2}}##, or
$$
f_\frac{1}{2}(x)=\int_0^xdt\bigg[\frac{f'(\min(t,f_{-\frac{1}{2}}(t)))}{f_\frac{1}{2}'(\min(f_\frac{1}{2}(t),f_{-\frac{1}{2}}(t)))}\bigg]
$$
and so ##f_\frac{1}{2}(x)## is uniquely defined on ##G_+##.