Mathematical formulation of Linear Programming Problem

AI Thread Summary
The discussion focuses on formulating a Linear Programming Problem (LPP) for a ship's cargo distribution to maximize profit while adhering to capacity constraints. The ship has three cargo holds with specific weight and volume limits, and three types of commodities are available for loading. The objective function is defined as Max Z = 150x1 + 200x2 + 125x3, where x1, x2, and x3 represent the tonnage of each commodity. Constraints include the total weight in each hold not exceeding its capacity and non-negativity conditions for the decision variables. The conversation emphasizes the need to consider multiple decision variables based on the distribution of cargo across the ship's holds.
Suvadip
Messages
68
Reaction score
0
A ship has three cargo loads -forward, centre and after. The capacity limits are given:

Commodity Weight (in tonne) Volume (in cu. feet)

Forward 2000 100000
Centre 3000 135000
After 1500 30000

The following cargoes are offered. The ship owner may accept all or any part of each commodity:

Commodity Weight (in tonne) Volume (in cu. feet) Profit per tonne (in Rs)

A 6000 60 150
B 4000 50 200
C 2000 25 125 In order to preserve the trim of the ship, the weight in each load must be proportional to the capacity in tonne. The cargo is to be distributed
so as to maximize the profit. Formulate the problem as LPP model.

Please help
 
Mathematics news on Phys.org
Can you show us what you have tried so that our helpers know where you are stuck and how best to offer help?
 
Hi suvadip!

An LP problem consists of 3 steps:
1. Identify the decision variables.
2. Identify the target function in terms of the decision variables.
3. Identify the constraints.

How far do you get?
 
I like Serena said:
Hi suvadip!

An LP problem consists of 3 steps:
1. Identify the decision variables.
2. Identify the target function in terms of the decision variables.
3. Identify the constraints.

How far do you get?

Let x1 tonne of A, x2 tonne of B and x3 tonne of C

Objective function: Max Z=150 x1 +200 x2+125 x3

Constraints:

Non-negativity conditions: x1, x2, x3>=0

Please give me hints about a single constraint. Rest I can do the rest.
 
suvadip said:
Let x1 tonne of A, x2 tonne of B and x3 tonne of C

Objective function: Max Z=150 x1 +200 x2+125 x3

Constraints:

Non-negativity conditions: x1, x2, x3>=0

Please give me hints about a single constraint. Rest I can do the rest.

I'm afraid that you have more decisions to make: whether cargo should go forward, center, or aft.

Let $x_{AF}$ be the tonne of A that goes Forward, $x_{BF}$ the tonne of B that goes Forward, and $x_{CF}$ the tonne of C that goes Forward.
In total you will have 9 decision variables.

Then the first constraint is that:
$$x_{AF} + x_{BF} + x_{CF} \le 2000$$

Extra constraints are the non-negativity constraints.
For these 3 decision variables, those are:
$$x_{AF} \ge 0$$
$$x_{BF} \ge 0$$
$$x_{CF} \ge 0$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
17
Views
3K
Replies
1
Views
2K
Back
Top