Matrices: a normal M, a projection Q, Hermitian transpose of product

  • Thread starter Thread starter nomadreid
  • Start date Start date
AI Thread Summary
The discussion focuses on establishing relationships between matrices, specifically proving QMQ=QM and QM*Q=QM*. The user initially expresses confusion about how to proceed with the problem involving Hermitian transposes. They later clarify their understanding, realizing that they can split the Hermitian transpose into its components and apply properties of transposition and complex conjugation. The user concludes that they have resolved their confusion and no longer need assistance. The thread highlights the importance of recognizing matrix properties in solving problems.
nomadreid
Gold Member
Messages
1,750
Reaction score
243
Homework Statement
Given: orthogonal basis, normal matrix M, Projection P onto k-eigenspace, Q orthogonal complement of P, N*= Hermitian transpose of N. Prove: (QMQ)*=Q(M*)Q
Relevant Equations
M*M=MM*, PP=P, Q=(Id-P), Pv = w implies Mw=kw
Establish QMQ=QM and QM*Q = QM*, reducing the problem to
(QM)*=QM*
((Id-P)M)*=(Id-P)M*
(M-PM)*=M*-PM*
Applying to random vector v (ie. |v>),
(M-PM)*v = M*v-PM*v
Not sure where to go from here, although it is probably something that is supposed to be obvious.
Any help would be appreciated.
 
Physics news on Phys.org
This thread can be closed, as I understand how to do it now. Simply split the Hermitian transpose into its two parts as transposing then taking complex conjugate; use (AB)T= BTAT on ((QM)Q) twice, then use (this time using * as simply complex conjugate) (AB)*= A*B* twice. Sorry for the inconvenience; I should have seen this the first time.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top