Matrix trace minimization and zeros

GoodSpirit
Messages
18
Reaction score
0
Hello, :)

I would like to minimize and find the zeros of the function F(S,P)=trace(S-SP’(A+ PSP’)^-1PS) in respect to S and P.

S is symmetric square matrix.
P is a rectangular matrix

Could you help me?
Thank you very much

All the best

GoodSpirit
 
Physics news on Phys.org
Hello everybody,

Perhaps I should explain a little bit.

The aim is to minimize an error metric and preferentially drive it to zero.
This should be done as function of S and P, as function of their rank and dimensions in particular.
By the way, the matrix A is symmetric too.

Many thanks
 
Hello,

Trying to update the equation presentation.

F(S,P)=tr(S-S P^T(A+PSP^T)^-1 PS)

A is positive definite

I've using matrix derivatives

What do you think?

All the best

GoodSpirit
 
LateX didn't work here

How to present an equation here?

Thank you

Good Spirit
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...
Back
Top