MHB Mattyk's question at Yahoo Answers regarding local extrema

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Extrema Local
AI Thread Summary
The function f(x) = -2x^3 + 21x^2 - 36x + 5 has one local minimum and one local maximum. The local minimum occurs at x = 1 with a value of -12, while the local maximum occurs at x = 6 with a value of 113. Critical values were found by setting the first derivative to zero, yielding x = 1 and x = 6. The second derivative test confirmed the nature of the extrema at these points. This analysis provides a clear understanding of the local extrema for the given cubic function.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calculus homework help?!?

The function f(x) = -2 x^3 + 21 x^2 - 36 x + 5 has one local minimum and one local maximum.
This function has a local minimum at x equals ? with value ?
and a local maximum at x equals ? with value ?

Here is a link to the question:

Calculus homework help?!? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Re: mattyk's question as Yahoo! Answers regarding local extrema

Hello mattyk,

We are given the function:

$f(x)=-2x^3+21x^2-36x+5$

To determine the critical values, i.e., the $x$-values at which the local extrema occur, we need to equate the first derivative to zero:

$f'(x)=-6x^2+42x-36=-6(x^2-7x+6)=-6(x-1)(x-6)=0$

Thus, our two critical values are:

$x=1,\,6$

To determine the nature of the extrema at these points, we may look at the sign of the second derivative there:

$f''(x)=-12x+42=-6(2x-7)$

$f''(1)>0$ thus $(1,f(1))=(1,-12)$ is a local minimum.

$f''(6)<0$ thus $(6,f(6))=(6,113)$ is a local maximum.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
5
Views
2K
Replies
1
Views
12K
Replies
1
Views
2K
Replies
16
Views
2K
Replies
1
Views
1K
Replies
1
Views
2K
Back
Top