- #1
Davidllerenav
- 424
- 14
Hi, I need help with this problem:
Condition: an object has to move from point A to point B in the least time possible. The distance between the points is L. The object can accelerate (decelerate) with a fixed acceleration ##a## or move with a constant speed.
What maximum speed does this object have to reach to satisfy the condition?
I guess this one:
##v= \frac {ds}{dt}##
If the object moves from A to B in the least time possible, that means that ##\Delta t## tends to ##0##. To find the maximum speed I need to find the moment when the object travels more dinstance in the least time. That would be the derivative of the distance ##L## with respect to ##t##, so ##lim_{\Delta t\to 0} \frac{\Delta L} {\Delta t} = \frac {dL} {dt}##. Am I right? The problem is that I don't know hot to find the maximum speed necessary. How do I find the maximum speed?
Homework Statement
Condition: an object has to move from point A to point B in the least time possible. The distance between the points is L. The object can accelerate (decelerate) with a fixed acceleration ##a## or move with a constant speed.
What maximum speed does this object have to reach to satisfy the condition?
Homework Equations
I guess this one:
##v= \frac {ds}{dt}##
The Attempt at a Solution
If the object moves from A to B in the least time possible, that means that ##\Delta t## tends to ##0##. To find the maximum speed I need to find the moment when the object travels more dinstance in the least time. That would be the derivative of the distance ##L## with respect to ##t##, so ##lim_{\Delta t\to 0} \frac{\Delta L} {\Delta t} = \frac {dL} {dt}##. Am I right? The problem is that I don't know hot to find the maximum speed necessary. How do I find the maximum speed?
Last edited: