MHB Maximize 2sinxcosx/[(1+sinx)(1+cosx)]

  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Maximize $\dfrac{2\sin x \cos x}{(1+\sin x)(1+\cos x)}$ for $x\in \left(0, \dfrac{\pi}{2}\right)$.
 
Mathematics news on Phys.org
AM-GM inequality
 
$\begin{align*}\dfrac{2\sin x \cos x}{(1+\sin x)(1+\cos x)}&=\dfrac{2\sin x \cos x (1-\sin x)}{(1-\sin^2 x)(1+2\cos^2 \dfrac{x}{2}-1)}\\&=\dfrac{2\sin x \cos x (1-\sin x)}{(\cos^2 x)(2\cos^2 \dfrac{x}{2})}\\&=\dfrac{\sin x}{\cos x}\left(\dfrac{1-2\sin \dfrac{x}{2} \cos \dfrac{x}{2}}{\cos^2 \dfrac{x}{2}}\right)\\&=\tan x\left(\sec^2 \dfrac{x}{2}-2\tan \dfrac{x}{2}\right)\\&=\dfrac{2\tan \dfrac{x}{2}}{1-\tan^2 \dfrac{x}{2}}\left(1+\tan^2 \dfrac{x}{2}-2\tan \dfrac{x}{2}\right)\\&=2\tan \dfrac{x}{2}\dfrac{\left(1-\tan \dfrac{x}{2}\right)\left(1-\tan \dfrac{x}{2}\right)}{\left(1+\tan \dfrac{x}{2}\right)\left(1-\tan \dfrac{x}{2}\right)}\\&=2\tan \dfrac{x}{2}\left(\dfrac{\tan \dfrac{\pi}{4}-\tan \dfrac{x}{2}}{1+\tan \dfrac{\pi}{2}\tan \dfrac{x}{2}}\right)\\&=2\tan \dfrac{x}{2}\tan \left( \dfrac{\pi}{4}-\dfrac{x}{2}\right)\end{align*}$

Therefore by the AM-GM inequality,

$\begin{align*}\sqrt{\dfrac{2\sin x \cos x}{(1+\sin x)(1+\cos x)}}&=\sqrt{2\tan \dfrac{x}{2}\tan \left( \dfrac{\pi}{4}-\dfrac{x}{2}\right)}\le \dfrac{\sqrt{2}}{2}\left(\tan \dfrac{\pi}{2}+\tan \left( \dfrac{\pi}{4}-\dfrac{x}{2}\right)\right)\end{align*}$

Equality attains when $\tan \dfrac{\pi}{2}=\tan \left( \dfrac{\pi}{4}-\dfrac{x}{2}\right)$, i.e. when $x=\dfrac{\pi}{4}$ where $\tan \dfrac{\pi}{8}=\sqrt{2}-1$, an exact value we could get from using the double angle formula for $\tan x$ and that $\tan \dfrac{\pi}{4}=1$.

Hence $\dfrac{2\sin x \cos x}{(1+\sin x)(1+\cos x)}\le 2(\sqrt{2}-1)^2=2(3-2\sqrt{2})$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
7
Views
1K
Replies
2
Views
970
Replies
2
Views
1K
Replies
3
Views
1K
Replies
7
Views
2K
Replies
2
Views
1K
Back
Top