- #1
lfdahl
Gold Member
MHB
- 749
- 0
Find the greatest real number, $T$, that satisfies the inequality:
\[\frac{(x^2+y)(y^2+x)}{(x+y-1)^2}+\frac{(y^2+z)(z^2+y)}{(y+z-1)^2}+\frac{(z^2+x)(x^2+z)}{(x+z-1)^2}-2(x+y+z)\geq T\]
for all real numbers $x$, $y$ and $z$, such that $x+y \ne 1$, $y+z \ne 1$ and $x+z \ne 1$.
\[\frac{(x^2+y)(y^2+x)}{(x+y-1)^2}+\frac{(y^2+z)(z^2+y)}{(y+z-1)^2}+\frac{(z^2+x)(x^2+z)}{(x+z-1)^2}-2(x+y+z)\geq T\]
for all real numbers $x$, $y$ and $z$, such that $x+y \ne 1$, $y+z \ne 1$ and $x+z \ne 1$.