Maximizing Area of Rectangle in x+3y=12 Plane

imsoconfused
Messages
50
Reaction score
0

Homework Statement


A rectangle has sides on the x and y axes and a corner on the plane x+3y=12. Find its maximum area.


Homework Equations



A=xy=(12-3y)y

(A=12, according to the solution manual.)

The Attempt at a Solution



At first I thought the corner it was talking about lay on one of the axes, but now I realize that it is a point around (4,3). I know there is a derivative (partial?) I need to take, but I don't know which one and or what to do it with respect to. I've drawn a graph so I can see what I'm doing, but the professor just skimmed over maximixation and I'm really confused! This chapter is not at a point that Lagrange multipliers have been covered. That's the way I would expect to do it, obviously not.
 
Physics news on Phys.org
Ok, if you want to maximize set dA/dy=0. What's y?
 
dA/dy=12-6y. y=2, and then (12-3(2))*2=12 and that's the area. I knew it couldn't be that hard. thanks!
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top