- #71
stglyde
- 275
- 0
PeterDonis said:Only in the simplest case of a single particle. When multiple particles are present, the space the wave function "lives" in is a tensor product of multiple copies of spacetime, one for each particle. So realistically, you can't think of a wave function even in Bohmian Mechanics as propagating in the actual spacetime we perceive.
(Actually, for standard Bohmian Mechanics, which is non-relativistic, even the single-particle wave function isn't a function on spacetime, it's a function on space that evolves in time; time is a parameter, not a coordinate. Multiple-particle wave functions are functions on a tensor product of N copies of space, one for each particle, which evolve in time. I'm assuming that a relativistic version of Bohmian Mechanics would work as I said above, since otherwise it wouldn't be able to match the predictions of standard quantum field theory; I haven't read through the paper linked to earlier that claims to develop such a relativistic version.)
If you have time. Please try to read through the paper which is only 10 pages long and half of it is in simple question and answer and the following is the last paragraph of half of it:
"O: Isn’t it shown that the Bohmian interpretation requires a preferred Lorentz frame?
R: That is true in the usual formulation of the Bohmian interpretation based on the
usual formulation of QM in which time and space are not treated on an equal footing.
When QM is generalized as outlined in 2) above, then the corresponding Bohmian inter-
pretation does not longer require a preferred Lorentz frame.
O: I think I’ve got a general idea now. But I’ll not be convinced until I see the technical
details."
The technical details are summary of what are presented in peer reviewed Physics Review Journal. It's written by he who called himself Demystifier who is here to defend himself.
The contents are radical.. It's perhaps like when Minkowski changed the world when he said "The views of space and time which I wish to lay before you have sprung from the soil of experimental physics, and therein lies their strength. They are radical. Henceforth space by itself, and time by itself, are doomed to fade away into mere shadows, and only a kind of union of the two will preserve an independent reality". Demystifier attempted to change the shadows into actual, and even more radical and deserves a Nobel (if he were right).
Anyway if you still don't have time to read it. What do you make of the following where he said time and space should be treated on an equal footing? Don't we treat space and time as equal footing now? Time is in imaginary axis while space is in real axis. Perhaps what he did is make time another space too? (what don't we and if not why do we not do it in the first place?)
"By 2) I mean that time and space should be treated on an equal footing. Note that in the usual formulation of QM, time and space are not treated on an equal footing. First, for one particle described by the wave function psi(x,t), the infinitesimal probability in the usual formulation is |psi|^2d^3 x, while from a symmetric treatment of time and space one expects |psi|^2 d^3 x dt. Second, for n particles the wave function in the usual formulation takes the form (x1, . . . , xn, t), while from a symmetric treatment of time and space one expects (x1, t1, . . . , xn, tn). I formulate QM such that fundamental axioms involve the
expressions above in which time and space are treated symmetrically, and show that the usual formulation corresponds to a special case."
http://xxx.lanl.gov/abs/1002.3226
Last edited: