MHB Mechanics- general motion in a straight line.

AI Thread Summary
A particle's velocity is defined by the equation v = -t^3 + 9t for the time interval 0 < t < 5 seconds. The displacement of the particle at t = 5 seconds is calculated to be -43.8 meters, indicating it has moved 43.8 meters in the negative direction from its original position. To find the total distance traveled from t = 0 to t = 5, the velocity is analyzed, showing it is positive from 0 to 3 seconds and negative from 3 to 5 seconds. The correct approach involves integrating the absolute value of velocity over these intervals, leading to a total distance of 84.3 meters. Understanding the distinction between displacement and distance is crucial in solving these types of motion problems.
Shah 72
MHB
Messages
274
Reaction score
0
A particle moves in a straight line. The velocity of the particle, v m/s, at time t s is given by v= -t^3+9t m/s for 0<t<5
a) Find the displacement of the particle from its original position, when t=5s
I got the ans for this by integration and limits 5 and 0 =- 43.8
b) work out the distance that the particle travels from t= 0 to t=5
I don't understand this. Velocity is positive from 0 to 3 and negative from 3 to 5 when I plot the velocity time graph.
I tried integration again with limits 3 to 0 and the next limit from 5 to 3. Iam not getting the ans which is 84.3m
 
Mathematics news on Phys.org
in general, distance traveled is the integral of speed …

$\displaystyle D = \int_{t_0}^{t_f} |v(t)| \, dt$

Note the velocity in this problem is positive in the interval (0,3) and negative in the interval (3,5]

two ways to do this …

$\displaystyle D = \int_0^3 9t-t^3 \, dt + \int_3^5 t^3 - 9t \, dt$

$\displaystyle D = \int_0^3 9t-t^3 \, dt - \int_3^5 9t-t^3 \, dt$
 
skeeter said:
in general, distance traveled is the integral of speed …

$\displaystyle D = \int_{t_0}^{t_f} |v(t)| \, dt$

Note the velocity in this problem is positive in the interval (0,3) and negative in the interval (3,5]

two ways to do this …

$\displaystyle D = \int_0^3 9t-t^3 \, dt + \int_3^5 t^3 - 9t \, dt$

$\displaystyle D = \int_0^3 9t-t^3 \, dt - \int_3^5 9t-t^3 \, dt$
Thank you very much!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
4
Views
2K
Replies
6
Views
1K
Replies
4
Views
991
Replies
7
Views
926
Replies
2
Views
984
Replies
5
Views
1K
Replies
8
Views
1K
Replies
3
Views
2K
Back
Top