MHB Minimizing Lateral Area of a Cone with Fixed Volume | Leprofece

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Area Cone Volume
AI Thread Summary
The discussion focuses on minimizing the lateral surface area of a right circular cone with a fixed volume. The objective function is defined as the lateral surface area, and the constraint relates the cone's height and radius to its volume. By substituting the constraint into the objective function and differentiating, the critical radius is determined to be r = sqrt[3]{3V/(sqrt{2}π)}. The corresponding height is found to be h = sqrt[3]{6V/π}, establishing a relationship between the dimensions that minimizes lateral area. The analysis confirms that these dimensions yield a local minimum for the lateral surface area of the cone.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

252) That shape must have a circular cone of volume "V" so the lateral area is going to be minimal.?

Answer is sqrt Cubic of ( 6V/pi) H = sqrt of 2 = V2

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello leprofece,

Our objective function, the lateral surface area of a right circular cone of base radius $r$ and height $h$ is:

$$f(h,r)=\pi r\sqrt{r^2+h^2}$$

And we are subject to the constraint:

$$g(h,r)=\frac{\pi}{3}hr^2-V=0$$

If we assume that $0<V$, then we must also assume the measures $h$ and $r$ are also positive.

If we solve the constraint for $h$, we obtain:

$$h=\frac{3V}{\pi r^2}$$

Now, substituting for $h$ into the objective function, we get:

$$f(r)=\pi r\sqrt{r^2+\left(\frac{3V}{\pi r^2} \right)^2}=\frac{\sqrt{\pi^2r^6+9V^2}}{r}$$

Next, we want to differentiate with respect to $r$ and equate the result to zero to determine the critical value(s). We may do so using the quotient rule:

$$f'(r)=\frac{r\left(\dfrac{6\pi ^2r^5}{2\sqrt{\pi^2r^4+9V^2}} \right)-\sqrt{\pi^2r^6+9V^2}}{r^2}=\frac{2\pi^2r^6-9V^2}{r^2\sqrt{\pi^2r^6+9V^2}}=0$$

This implies:

$$2\pi^2r^6-9V^2=0$$

Solving for $r$, and taking the positive root, we find:

$$r^6=\frac{9V^2}{2\pi^2}$$

$$r=\sqrt[3]{\frac{3V}{\sqrt{2}\pi}}$$

Observing that the denominator of the first derivative of the objective function will always be positive for $0<r$, we may look only at the numerator and observe that to the left of the critical value the derivative is negative and to the right it is positive, and so by the first derivative test, we may conclude that the critical value we found is associated with a local minimum of the objective function.

Hence, the measures of the cone of volume $V$ having minimal lateral surface area are:

$$h\left(\sqrt[3]{\frac{3V}{\sqrt{2}\pi}} \right)=\frac{3V}{\pi \left(\sqrt[3]{\frac{3V}{\sqrt{2}\pi}} \right)^2}=\sqrt[3]{\frac{6V}{\pi}}=\sqrt{2}r$$

$$r=\sqrt[3]{\frac{3V}{\sqrt{2}\pi}}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top