Minimum wavelength of phonons under the Debye aproximation

AI Thread Summary
The discussion centers on calculating the minimum phonon wavelength under the Debye approximation for a monoatomic cubic lattice with a lattice constant of 3.7 Å. Participants note that the Debye frequency is defined as the maximum frequency, leading to a corresponding minimum wavelength, but calculations yield different results. The minimum wavelength is suggested to be 2a due to the Nyquist theorem, which raises questions about the validity of the example problem's solution. There is a consensus that the problem is over-defined, as the Debye frequency can be derived from the lattice parameter and sound speed without needing the provided frequency. Clarifications on the calculations and potential errors in the example are recommended.
AngelFis93
Messages
2
Reaction score
0
Homework Statement
It's stated on an example problem that under Debye aproximation on a monoatomic cubic lattice of lattice constant a= 3.7 Å, sound speed v=3000 m/s (in both longitudinal and transverse directions) and Debye frequency ω=3.2·10^(13) rad/s, to find the minimum phonon wavelength. They give you the solution λ=4.27 Å .
Relevant Equations
λ=v/f
Since in Debye aproximation Debye's frecuency is defined as the maximum frecueny , the corresponding wavelenght should be the minimum one, due to the inverse relation among those

λ=v/f=v·2π/ω=5.9 Å , which is higher than the given result.

I believe I should be using the information 'cubic lattice' somehow ,but can't see it.Thanks.
 
Last edited:
Physics news on Phys.org
It a bit strange.
Problem is over-defined. You do not need Debye frequency here because it is calculable from lattice parameter and sound speed. Actually as i calculate Debye approximation using equation
ω/(2*pi)=(Cs/2a)*[(9/(4*pi))^(1/3)]
, ω for 3.7 Å lattice should be 2.277*10^13
Higher value of 3.2*10^13 will actually give wavelength 4.19 Å.
 
Last edited:
AngelFis93 said:
Homework Statement:: It's stated on an example problem that under Debye aproximation on a monoatomic cubic lattice of lattice constant a= 3.7 Å, sound speed v=3000 m/s (in both longitudinal and transverse directions) and Debye frequency ω=3.2·10^(13) rad/s, to find the minimum phonon wavelength. They give you the solution λ=4.27 Å .
Homework Equations:: λ=v/f

Since in Debye aproximation Debye's frecuency is defined as the maximum frecueny , the corresponding wavelenght should be the minimum one, due to the inverse relation among those

λ=v/f=v·2π/ω=5.9 Å , which is higher than the given result.

I believe I should be using the information 'cubic lattice' somehow ,but can't see it.Thanks.
Is the intention of the example to show you where the Debye approximation breaks down? Because, the minimum wavelength is actually ##2a## because of the Nyquist theorem (https://en.wikipedia.org/wiki/Phonon#Lattice_waves).

You should try to take the value of ##2a## and divide by the factor you get from taking the body diagonal of a cube. You will get the answer you posted, which to me seems wrong.
 
Dr_Nate said:
Is the intention of the example to show you where the Debye approximation breaks down?
I don't think so, at least there isn't anything in the statement that makes me think that way.
Dr_Nate said:
You should try to take the value of 2a2a and divide by the factor you get from taking the body diagonal of a cube. You will get the answer you posted, which to me seems wrong.
I came to the same conclusion, a·2/√3 gives the exact solution, I just can't find in the theory were it's justified why it is calculated this way. A mistake in the solution could be posible aswell, so i probably ask the proffesor directly.

Thanks for the reply

trurle said:
It a bit strange.
Problem is over-defined. You do not need Debye frequency here because it is calculable from lattice parameter and sound speed. Actually as i calculate Debye approximation using equation
ω/(2*pi)=(Cs/2a)*[(9/(4*pi))^(1/3)]
, ω for 3.7 Å lattice should be 2.277*10^13
Higher value of 3.2*10^13 will actually give wavelength 4.19 Å.

I get 3.2 ·10^(13) rad/s using ω =v·k=v·a^(-1)(6π^2)^(1/3) for ω,k on Debyes aproximation (a^(-1) for being a cubic lattice, and using the definition of Debye's k).

Thanks for the reply.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...

Similar threads

Replies
0
Views
5K
Replies
1
Views
2K
Replies
1
Views
4K
Replies
1
Views
5K
Replies
5
Views
3K
Replies
5
Views
3K
Back
Top