I Minkowski to Euclidean line element from coordinate changes?

Pencilvester
Messages
206
Reaction score
48
TL;DR Summary
I haven’t studied coordinate change law— what am I doing here that’s illegal?
I would guess there’s some subtlety in the relationship between basis vectors and coordinates that I’m ignoring, but I really have no idea.

$$ ds^2 = -dt^2 + d\tilde{x}^2 $$


$$ d\tilde{t} = dt / \sqrt{\tilde{x}} $$
$$ \downarrow $$
$$ ds^2 = -\tilde{x} ~ d\tilde{t}^2 + d\tilde{x}^2 $$


$$ dx = -d\tilde{x} ~ \Rightarrow ~ \frac{d\tilde{x}}{dx} = -1 ~ \Rightarrow ~ \tilde{x} = -x ~ (+ C) $$
$$ \downarrow $$
$$ ds^2 = x ~ d\tilde{t}^2 + dx^2 $$


$$ dy = \sqrt{x} ~ d\tilde{t} $$
$$ \downarrow $$
$$ ds^2 = dx^2 + dy^2 $$
 
Physics news on Phys.org
Given your definitions of ##d\tilde t##, ##dy## and ##dx## you have that ##dy=\sqrt{x/\tilde x}\ dt=i\ dt##. So you have effectively picked up the old ##ict## convention in ##c=1## units.
 
  • Like
Likes Dale, Pencilvester, PeterDonis and 1 other person
Pencilvester said:
$$ d\tilde{t} = dt / \sqrt{\tilde{x}} $$
Apart from what was already said, what kind of coordinate transformation do you imagine that would satisfy this? Coordinate differentials by their nature as the differential of coordinate functions must be exact. The RHS here is not exact and therefore there can be no function ##\tilde t(t,\tilde x)## that satisfies this relation. (That it is not exact is clear from the fact that it is not closed and all exact forms are closed.)
 
Last edited:
  • Like
Likes Pencilvester
Orodruin said:
The RHS here is not exact and therefore there can be function ##\tilde t(t,\tilde x)## that satisfies this relation.
I assume you mean cannot here.

To rephrase what you are saying in a way that might be more accessible to the OP, the function ##\tilde{t} (t, \tilde{x} )## must be a function of both ##t## and ##\tilde{x}## since ##1 / \sqrt{\tilde{x}}## appears in the ##dt## term; but that means ##d \tilde{t}## must have both a ##dt## and a ##d \tilde{x}## term in it. So the formula given in the OP for ##d \tilde{t}## can't be right as it stands.
 
  • Like
Likes Pencilvester
PeterDonis said:
I assume you mean cannot here.
I think I intended to write out ”can be no function”, but yes, the same idea. Fixed it.

Edit: Indeed, more hands-on even, if the factor in front of ##dt## is ##1/\sqrt{\tilde x}## then ##\partial \tilde t/\partial t = 1/\sqrt{\tilde x}## implying that ##\tilde t = t/\sqrt{\tilde x} + f(\tilde x)##. But this in turn would imply that
$$
d\tilde t = dt/\sqrt{\tilde x} +\left[f’(\tilde x) - \frac{t}{2\sqrt{\tilde x}^3}\right] d\tilde x
$$
where there is no way to get rid of the ##t##-dependent term in front of ##d\tilde x##.
 
  • Like
Likes Pencilvester and PeterDonis
Orodruin said:
Apart from what was already said, what kind of coordinate transformation do you imagine that would satisfy this? Coordinate differentials by their nature as the differential of coordinate functions must be exact. The RHS here is not exact and therefore there can be no function ##\tilde t(t,\tilde x)## that satisfies this relation. (That it is not exact is clear from the fact that it is not closed and all exact forms are closed.)
I think this is the crucial point of which I was ignorant. Coordinate differentials were new to me, and I was having trouble contextualizing them with coordinate transformations. The fact that they need to be exact seems obvious now that you’ve told me, but it’s definitely what I was missing, so thanks!
 
  • Like
Likes PeterDonis and Dale
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...

Similar threads

Back
Top