- #1
jack476
- 328
- 125
- Homework Statement
- Full context:
We consider a model for an ##SU(2)## doublet with the following Lagrangian:
##L = -\frac{1}{4}F^a_{\mu\nu}F^a_{\mu\nu}+(D_{\mu}\varphi)^{\dagger}(D_{\mu}\varphi)+\mu^2 \varphi^\dagger \varphi -\lambda(\varphi^\dagger \varphi)^2## where ##D_\mu \varphi = \partial_\mu \varphi -\frac{1}{2}A^a?\mu \tau^a \varphi## and ##\tau^a## are the generators of the Lie algebra of ##SU(2)## (the Pauli matrices) and the ##A^a_\mu## are real-valued functions.
We choose the following as the ground state: ##A^{a,(v)}_\mu = 0, \varphi^{(v)} = \frac{1}{\sqrt{2}}\begin{bmatrix}0 \\ \varphi_0 \end{bmatrix}## where ##\varphi_0 = \frac{\mu}{\sqrt{2\lambda}}##, and we consider small excitations about the ground state with the form ##\varphi = \frac{1}{\sqrt{2}}\begin{bmatrix}\theta^1 +i\theta^2 \\ \varphi_0 + \chi +i\theta^3\end{bmatrix}##. Notice that under the ##SU(2)## transformation ##\varphi \to \omega(x)\varphi## where ##\omega = I+i\tau^a u^a(x)## where the ##u^a## are small real functions, to linear order in the fields, the ##\chi## function does not change, but the ##\theta## functions each pick up a new term which will depend on the ##u## functions, so only the ##\chi## function represents a physical scalar boson field and the ##\theta## fields are arbitrary "fictitious" bosons. To quadratic order in the fields, we can eliminate these from the Lagrangian by substituting ##\varphi## into the Lagrangian, expanding, and making a change of the gauge field variables that gets rid of the ##\theta## terms, or alternatively by fixing a unitary gauge in which ##\varphi = \frac{1}{2}\begin{bmatrix}0 \\ \varphi_0 + \chi \end{bmatrix}## and then expanding the Lagrangian. Either way, the quadratic-order Lagrangian turns out to be ##L^{(2)} = -\frac{1}{4}(\partial_{\mu}A^a_{\nu}-\partial_{\nu}A^a_{\mu})^2 + \frac{1}{2}(\partial_\mu \chi)^2+\frac{1}{8}g^2 \varphi_0^2 A^a_{\mu}A^a_{\mu} -\mu^2\chi^2##. In this case, all three of the vector boson fields ##A^a_\mu## have the same mass, ##m_V = \frac{g\varphi_0}{2}.##
We can write the ##SU(2)## doublet in the form ##\begin{bmatrix}\eta^1+i\eta^2 \\ u + i\eta^3\end{bmatrix}##. Then the scalar potential for the model can be written ##-\mu^2(u^2+\eta^a\eta^a) +\lambda(u^2+\eta^a\eta^a)^2##, and this potential has a global ##SO(3)## invariance where ##u## is a scalar that transforms according to the trivial representation of ##SO(3)## (singlet) and the ##\eta^a## are the components of a vector in ##\mathbb{R}^3## that transform according to the fundamental representation of ##SO(3)## (triplet). This global ##SO(3)## invariance is not spontaneously broken by the chosen ground state ##\varphi^{(v)} = \frac{1}{\sqrt{2}}\begin{bmatrix}0 \\ \varphi_0\end{bmatrix}##.
Problem statement:
1.) Choose a transformation rule for the gauge vector fields so that the Lagrangian for the model is invariant under global ##SO(3)## transformations.
2.) Show that the equality of the masses of the vector bosons in the quadratic Lagrangian is a consequence of the fully unbroken global ##SO(3)## symmetry.
Source: Valery Rubakov, Classical Theory of Gauge Fields, problem 6.6.
- Relevant Equations
- Everything is given in the problem statement.
1.) The rule for the global ##SO(3)## transformation of the gauge vector field is ##A^i_{\mu} \to \omega_{ij}A^j_{\mu}## for ##\omega \in SO(3)##.
The proof is by direct calculation. First, if ##A^i_{\mu} \to \omega_{ij}A^j_{\mu}## then ##F^i_{\mu \nu} \to \omega_{ij}F^j_{\mu\nu}##, so ##F^i_{\mu\nu}F^i_{\mu\nu} \to \omega_{ij}\omega_{ik}F^j_{\mu\nu}F^k_{\mu\nu} = \delta_{jk}F^j_{\mu\nu}F^k_{\mu\nu} = F^j_{\mu\nu}F^j_{\mu\nu}##, and in general "dot product" terms ##x^iy^i## are invariant under ##SO(3)## transformations. so the part with the strength tensor is invariant. Now we expand the kinetic energy: ##(D_{\mu}\varphi)^{\dagger}(D_{\mu}\varphi) = (\partial_{\mu}u)^2 + (\partial_{\mu}\eta^i)^2 +g\big(\epsilon^{ijk}(\partial_{\mu}\eta^i)A_{\mu}^j\eta^k+(\partial_{\mu}u)A^i_\mu\eta^i-uA^i_{\mu}\partial_{\mu}\eta^i\big)+\frac{g^2}{4}A^a_{\mu}A^a_{\mu}(u^2+\eta^i\eta^i)##> The dot product terms are all invariant. The "cross product" ##\epsilon^{ijk}A^j_{\mu}\eta^k## transforms to ##\epsilon^{ijk}\omega_{jl}\omega_{km}A^l_{\mu}\eta^m## and by the rotation invariance of the cross product this is equal to ##\omega_{il}\epsilon^{ljk}A^j_{\mu}\eta^k##, so ##\epsilon^{ijk}(\partial_{\mu}\eta^i)A_{\mu}^j\eta^k \to \omega_{ij}\omega_{il}\epsilon^{ljk}(\partial_{\mu}\eta^j)A_{\mu}^j\eta^k = \epsilon^{ijk}(\partial_{\mu}\eta^i)A_{\mu}^j\eta^k##. The invariance of dot products under ##SO(3)## means that the potential is also invariant. Therefore the Lagrangian is invariant under global ##SO(3)## transformations of the form ##u \to u, \eta^i \to \omega_{ij}\eta^j, A^i_\mu \to \omega_{ij}A^j_\mu##.
Simple enough. The second part is really where I'm having trouble.
For simplicity, and without losing generality, we can spontaneously break the ##SO(3)## symmetry down to ##SO(2)## by choosing the ground state $$\varphi^{(v)} = \frac{1}{\sqrt{2}}\begin{bmatrix}0 \\ \phi_0+iv\end{bmatrix}$$
Let's consider small excitations about this ground state with the form $$\varphi = \frac{1}{\sqrt{2}}\begin{bmatrix}\theta^1+i\theta2 \\ \phi_0+\chi+i(v+\theta^3)\end{bmatrix}$$ Let ##\omega(x) = I+i\tau^a u^a## be an SU(2) gauge transformation where the ##u^a## are small. Then to linear order:
$$\omega\varphi = \frac{1}{\sqrt{2}}\begin{bmatrix}\theta^1+\varphi_0u^2-vu^1+i(\theta^2+\varphi_0u^1+vu^2) \\ \varphi_0+ \chi +vu^3+i(v+\theta^3 - \varphi_0u^3)\end{bmatrix}$$
The ##\chi## function has picked up a non-constant term ##vu^3##. This means that as a result of spontaneously breaking the ##SO(3)## global symmetry, the ##\chi## function has been demoted from a Higgs field to a fictitious field which we will need to eliminate from the Lagrangian.
We'll fix the gauge and set ##\theta^1=\theta^2=\theta^3=0##. Then to linear order in the fields:
$$D_{\mu}\varphi = \frac{1}{\sqrt{2}}\begin{bmatrix}0 \\ \partial_{\mu}\chi \end{bmatrix} -\frac{ig}{2\sqrt{2}}A^a_{\mu}\tau^a\begin{bmatrix}0 \\ \varphi_0+iv\end{bmatrix}$$
Then to quadratic order, ##(D_{\mu}\varphi)^\dagger (D_{\mu}\varphi) = \frac{1}{2}(\partial_{\mu}\chi)^2-\frac{1}{2}gvA^3_{\mu}\partial_{\mu}\chi+\frac{1}{8}g^2(v^2+\varphi^2_0)A^a_{\mu}A^a_{\mu}##. For the ##a=3## component, we have: $$\begin{align*}\frac{1}{2}(\partial_{\mu}\chi)^2 -\frac{1}{2}gvA^3_\mu\partial_{\mu}\chi+\frac{1}{8}g^2(v^2+\varphi_0^2)A^3_{\mu}A^3_{\mu} &= \frac{1}{8}g^2v^2\left(A^3_{\mu}-\frac{2}{gv}\partial_{\mu}\chi\right)^2+\frac{1}{8}g^2\varphi_0^2A^3_{\mu}A^3_{\mu}\\
&\equiv \frac{g^2v^2}{8}B^3_{\mu}B^3_{\mu}+\frac{g^2\varphi_0^2}{8}A^3_{\mu}A^3_{\mu}
\end{align*}$$
And from here I don't really know how to proceed. I could factor this into a product of complex fields, but there seems to be some ambiguity in how I can do that. For instance, I could set ##Z^{\pm}_{\mu} = B^3_{\mu}\pm i\frac{\varphi_0}{v}A^3_{\mu}## so that ##\frac{g^2v^2}{8}B^3_{\mu}B^3_{\mu}+\frac{g^2\varphi_0^2}{8}A^3_{\mu}A^3_{\mu} = \frac{g^2v^2}{8}Z^{+}_{\mu}Z^{-}_{\mu}## or I could do ##Z^{\pm}_{\mu} = \frac{vB^3_{\mu} \pm i\varphi_0A^3_{\mu}}{\sqrt{\varphi_0^2+v^2}}## so that ##\frac{g^2v^2}{8}B^3_{\mu}B^3_{\mu}+\frac{g^2\varphi_0^2}{8}A^3_{\mu}A^3_{\mu} = \frac{g^2(v^2+\varphi_0^2)}{8}Z^{+}_{\mu}Z^{-}_{\mu}##.
So how do I finish this off and show that the three vector fields do not all have the same mass? Am I making a mistake somewhere?
The proof is by direct calculation. First, if ##A^i_{\mu} \to \omega_{ij}A^j_{\mu}## then ##F^i_{\mu \nu} \to \omega_{ij}F^j_{\mu\nu}##, so ##F^i_{\mu\nu}F^i_{\mu\nu} \to \omega_{ij}\omega_{ik}F^j_{\mu\nu}F^k_{\mu\nu} = \delta_{jk}F^j_{\mu\nu}F^k_{\mu\nu} = F^j_{\mu\nu}F^j_{\mu\nu}##, and in general "dot product" terms ##x^iy^i## are invariant under ##SO(3)## transformations. so the part with the strength tensor is invariant. Now we expand the kinetic energy: ##(D_{\mu}\varphi)^{\dagger}(D_{\mu}\varphi) = (\partial_{\mu}u)^2 + (\partial_{\mu}\eta^i)^2 +g\big(\epsilon^{ijk}(\partial_{\mu}\eta^i)A_{\mu}^j\eta^k+(\partial_{\mu}u)A^i_\mu\eta^i-uA^i_{\mu}\partial_{\mu}\eta^i\big)+\frac{g^2}{4}A^a_{\mu}A^a_{\mu}(u^2+\eta^i\eta^i)##> The dot product terms are all invariant. The "cross product" ##\epsilon^{ijk}A^j_{\mu}\eta^k## transforms to ##\epsilon^{ijk}\omega_{jl}\omega_{km}A^l_{\mu}\eta^m## and by the rotation invariance of the cross product this is equal to ##\omega_{il}\epsilon^{ljk}A^j_{\mu}\eta^k##, so ##\epsilon^{ijk}(\partial_{\mu}\eta^i)A_{\mu}^j\eta^k \to \omega_{ij}\omega_{il}\epsilon^{ljk}(\partial_{\mu}\eta^j)A_{\mu}^j\eta^k = \epsilon^{ijk}(\partial_{\mu}\eta^i)A_{\mu}^j\eta^k##. The invariance of dot products under ##SO(3)## means that the potential is also invariant. Therefore the Lagrangian is invariant under global ##SO(3)## transformations of the form ##u \to u, \eta^i \to \omega_{ij}\eta^j, A^i_\mu \to \omega_{ij}A^j_\mu##.
Simple enough. The second part is really where I'm having trouble.
For simplicity, and without losing generality, we can spontaneously break the ##SO(3)## symmetry down to ##SO(2)## by choosing the ground state $$\varphi^{(v)} = \frac{1}{\sqrt{2}}\begin{bmatrix}0 \\ \phi_0+iv\end{bmatrix}$$
Let's consider small excitations about this ground state with the form $$\varphi = \frac{1}{\sqrt{2}}\begin{bmatrix}\theta^1+i\theta2 \\ \phi_0+\chi+i(v+\theta^3)\end{bmatrix}$$ Let ##\omega(x) = I+i\tau^a u^a## be an SU(2) gauge transformation where the ##u^a## are small. Then to linear order:
$$\omega\varphi = \frac{1}{\sqrt{2}}\begin{bmatrix}\theta^1+\varphi_0u^2-vu^1+i(\theta^2+\varphi_0u^1+vu^2) \\ \varphi_0+ \chi +vu^3+i(v+\theta^3 - \varphi_0u^3)\end{bmatrix}$$
The ##\chi## function has picked up a non-constant term ##vu^3##. This means that as a result of spontaneously breaking the ##SO(3)## global symmetry, the ##\chi## function has been demoted from a Higgs field to a fictitious field which we will need to eliminate from the Lagrangian.
We'll fix the gauge and set ##\theta^1=\theta^2=\theta^3=0##. Then to linear order in the fields:
$$D_{\mu}\varphi = \frac{1}{\sqrt{2}}\begin{bmatrix}0 \\ \partial_{\mu}\chi \end{bmatrix} -\frac{ig}{2\sqrt{2}}A^a_{\mu}\tau^a\begin{bmatrix}0 \\ \varphi_0+iv\end{bmatrix}$$
Then to quadratic order, ##(D_{\mu}\varphi)^\dagger (D_{\mu}\varphi) = \frac{1}{2}(\partial_{\mu}\chi)^2-\frac{1}{2}gvA^3_{\mu}\partial_{\mu}\chi+\frac{1}{8}g^2(v^2+\varphi^2_0)A^a_{\mu}A^a_{\mu}##. For the ##a=3## component, we have: $$\begin{align*}\frac{1}{2}(\partial_{\mu}\chi)^2 -\frac{1}{2}gvA^3_\mu\partial_{\mu}\chi+\frac{1}{8}g^2(v^2+\varphi_0^2)A^3_{\mu}A^3_{\mu} &= \frac{1}{8}g^2v^2\left(A^3_{\mu}-\frac{2}{gv}\partial_{\mu}\chi\right)^2+\frac{1}{8}g^2\varphi_0^2A^3_{\mu}A^3_{\mu}\\
&\equiv \frac{g^2v^2}{8}B^3_{\mu}B^3_{\mu}+\frac{g^2\varphi_0^2}{8}A^3_{\mu}A^3_{\mu}
\end{align*}$$
And from here I don't really know how to proceed. I could factor this into a product of complex fields, but there seems to be some ambiguity in how I can do that. For instance, I could set ##Z^{\pm}_{\mu} = B^3_{\mu}\pm i\frac{\varphi_0}{v}A^3_{\mu}## so that ##\frac{g^2v^2}{8}B^3_{\mu}B^3_{\mu}+\frac{g^2\varphi_0^2}{8}A^3_{\mu}A^3_{\mu} = \frac{g^2v^2}{8}Z^{+}_{\mu}Z^{-}_{\mu}## or I could do ##Z^{\pm}_{\mu} = \frac{vB^3_{\mu} \pm i\varphi_0A^3_{\mu}}{\sqrt{\varphi_0^2+v^2}}## so that ##\frac{g^2v^2}{8}B^3_{\mu}B^3_{\mu}+\frac{g^2\varphi_0^2}{8}A^3_{\mu}A^3_{\mu} = \frac{g^2(v^2+\varphi_0^2)}{8}Z^{+}_{\mu}Z^{-}_{\mu}##.
So how do I finish this off and show that the three vector fields do not all have the same mass? Am I making a mistake somewhere?