- #1
Busybee12
- 6
- 0
The rotating parts of a motor have a moment of inertia of 15 kgm^2 and an optimum running speed of 1400 rev/min. When operating the motor is connected at optimum speed , by means of a clutch, to a shaft which has a counter rotation of 600 rev/min. The shaft has a mass of 80 kg and a solid diameter of 1200 mm.
i) Find the common speed of rotation of the two shafts, immediately after slippage has finished.
ii) Determine the change in angular momentum of the motor as the common speed is reached.
iii) Determine the change in angular kinetic energy of the motor as the common speed is reached.
iv) If the motor sends a torque of 220 Nm, find how long it will take for the system to regain optimum running speed for the motor.
I have tried using equations but had no success
i) Find the common speed of rotation of the two shafts, immediately after slippage has finished.
ii) Determine the change in angular momentum of the motor as the common speed is reached.
iii) Determine the change in angular kinetic energy of the motor as the common speed is reached.
iv) If the motor sends a torque of 220 Nm, find how long it will take for the system to regain optimum running speed for the motor.
I have tried using equations but had no success