Moment of Inertia of an L-shaped bar

AI Thread Summary
The discussion centers on calculating the initial acceleration of point A on an L-shaped bar when a force P is applied. The center of mass was determined, and equations for force and moment were utilized to derive angular acceleration. The moment of inertia was calculated by treating the L-shape as two rods and applying Steiner's Theorem. The participant is unsure how to proceed with finding the acceleration of point A without knowing the angular velocity, but it is noted that the question specifically asks for the initial acceleration. The conversation emphasizes the importance of understanding the moment of inertia in solving the problem.
Kotten
Messages
3
Reaction score
0

Homework Statement


The L-shaped bar of mass m is lying on the horizontal surface when the force P is applied at A as shown. Determine the initial acceleration of point A. Neglect friction and the thickness of the bar.
(Sorry, don´t know how to get you a better picture)

L
B----------------
I
I L
I
P--------> I
A

Homework Equations


G=1/M*Sum(m_i*r_i) (a)
Sum(F_x)=ma_(Gx) (b)
Sum(F_y)=ma_(Gy) (c)
Sum(M_G)=I_G*alpha (d)

The Attempt at a Solution


I have calculated the center of mass, using eq (a), and got (from the bend of the bar)
G= -L/4 i -L/4 j
I also used eq (b) to get
P=ma_(Gx) ---> a_(Gx)=P/m
(c) gave
0=ma_(Gy) ---> a_(Gy)=0
and from (d) i got
P*3/4*L=I_G*alpha ---> alpha=(3PL)/(4*I_G )
And then I guess I have to calculate the moment of inertia for the figure, but I don´t know how to do that :/ Also I´m a bit confused, because this seems to me like a way to solve this problem, the chapter on how to calculate momento of inertia comes after this in the book. Is there another way to solve it? Or is this wrong and I´m missing something?
 
Physics news on Phys.org
Kotten said:
(Sorry, don´t know how to get you a better picture)
Use the "whiteboard" feature to create a diagram. Then you can cut and paste it into your post.
 
Thank you :)
 

Attachments

  • 6.45.jpg
    6.45.jpg
    2 KB · Views: 1,378
Kotten said:
And then I guess I have to calculate the moment of inertia for the figure, but I don´t know how to do that :/ Also I´m a bit confused, because this seems to me like a way to solve this problem, the chapter on how to calculate momento of inertia comes after this in the book. Is there another way to solve it? Or is this wrong and I´m missing something?
It's not obvious to me how you'd solve it without first calculating the moment of inertia. I guess you'll have to read the next chapter! Hint: treat the L-shape as two straight rods.
 
Ok, thank you :)
I have now tried to calculate the moment of inertia:
I_GA=1/12*m/2*L^2
I_GB=--------II---------
That would give (using Steiners Theorem):
I_G=I_GA+m/2*(L/4)^2+I_GB+m/2*(L/4)^2=2(1/12*m/2*L^2+m/2(L/4)^2)=L^2*m(1/12+1/16)
I got the moment about G:
M_G=-Pkx(-1/4*Li+3/4*Lj)=1/4PL(3i+j)
And then I used that to get:
alpha=M_G/I_G=(PL(3i+j))/(4*L^2*m(1/12+1/16))=(P(3i+j))/(Lm(1/3+1/4))
But after that I´m not sure how to continue... I´ve got the acceleration of point O, and the angular acceleration, but how do I calculate the acceleration of A without knowing the angular velocity?
 
Kotten said:
But after that I´m not sure how to continue... I´ve got the acceleration of point O, and the angular acceleration, but how do I calculate the acceleration of A without knowing the angular velocity?
Hint: They ask for the initial acceleration.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Back
Top