B More examples of equations that unexpectedly model nature in similar ways

AI Thread Summary
The discussion highlights the fascination with equations that model similar aspects of nature, emphasizing the concept of symmetry in scientific equations. Examples include the analogous relationships between linear force and acceleration (F = ma) and rotational torque and acceleration (τ = Iα). Additionally, it notes that both LRC electrical circuits and damped spring-mass systems can be described by similar second-order differential equations. The conversation reflects on the limited number of solvable equations, suggesting a deeper connection to the fundamental nature of the universe. Overall, the exploration of these mathematical parallels reveals intriguing insights into the underlying principles governing physical phenomena.
syfry
Messages
172
Reaction score
21
Been dipping my toes into maths by examining how equations work on the most basic level, and I love encountering equations that turn out to model similar aspects in nature, for example the inverse square law is apparent in equations for gravity and for electromagnetism.

In the thumbnail of this video, the equations for electric and gravitational forces are very similar.

Symmetry (visual) might be the description I'm going for.

What are more examples of equations in science with visual (or functional) type of symmetry?
 
Mathematics news on Phys.org
I'm not totally clear on what you're asking, but will assume that by "symmetry" you mean equations for physical quantities that are analogous to each other. If so, here are a couple that come to mind.
Linear force F and acceleration -- F = ma
Rotational torque and rotational acceleration ##\tau = I\alpha##
In these equations the pairs force (F) and torque (##\tau##), mass (m) and moment of inertia (I), and acceleration (a) and rotational acceleration (##\alpha##) are analogous.

Another example that is more complicated is how an LRC (inductor, resistor, capacitor) electrical circuit can be described by essentially the same second-order differential equation as a damped, spring and mass system. The equation for the electrical circuit, where the source voltage is constant is ##\ddot I(t) + \frac R l \dot I(t) + \frac 1 {LC} I(t) = 0##. Here I(t) is the current at time t, R is the resistance of the resistor, L is the inductance of the coil, and C is the capacitance of the coil.

The analogous equation for a damped, spring mass system is ##\ddot x(t) + \frac c m \dot x(t) + \frac k m x(t) = 0##.
 
I am always aware of the adage "If you have a hammer, all your problems look like a nail" which I believe is also called "Maslow's Hammer".
There are only a small number of equations that we can happily solve and so our musings lead us there. Of course that this is true may be further indication of the fundamentals of the solution.....
 
hutchphd said:
There are only a small number of equations that we can happily solve and so our musings lead us there.
One of my professors was musing in class one day. "We see this - second order partial differential equations - everywhere, in all kinds of unrelated places. Does this tell us more about the world, or more about ourselves?"
 
  • Like
Likes Astronuc and hutchphd
Mark44 said:
I'm not totally clear on what you're asking, but will assume that by "symmetry" you mean equations for physical quantities that are analogous to each other. If so, here are a couple that come to mind.
Linear force F and acceleration -- F = ma
Rotational torque and rotational acceleration ##\tau = I\alpha##
In these equations the pairs force (F) and torque (##\tau##), mass (m) and moment of inertia (I), and acceleration (a) and rotational acceleration (##\alpha##) are analogous.

Another example that is more complicated is how an LRC (inductor, resistor, capacitor) electrical circuit can be described by essentially the same second-order differential equation as a damped, spring and mass system. The equation for the electrical circuit, where the source voltage is constant is ##\ddot I(t) + \frac R l \dot I(t) + \frac 1 {LC} I(t) = 0##. Here I(t) is the current at time t, R is the resistance of the resistor, L is the inductance of the coil, and C is the capacitance of the coil.

The analogous equation for a damped, spring mass system is ##\ddot x(t) + \frac c m \dot x(t) + \frac k m x(t) = 0##.
Yeah that's the word, analagous!

Really nice example with torque. The examples with the electrical circuit also, so symmetrically satisfying and interesting.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top