- #1
sponsoredwalk
- 533
- 5
Here is a bilinear map φ of two vector spaces V₁ & V₂ into another vector space N with
respect to the bases B = {e₁,e₂} & B' = {e₁',e₂'}:
φ : V₁ × V₂ → N | (m₁,m₂) ↦ φ(m₁,m₂) = φ(∑ᵢλᵢeᵢ,∑jμje'j)
_______________________________= φ(λ₁e₁ + λ₂e₂,μ₁e₁' + μ₂e₂') = φ(λ₁e₁ + λ₂e₂,μ₁e₁') + φ(λ₁e₁ + λe₂,μ₂e₂')
_______________________________= φ(λ₁e₁,μ₁e₁') + φ(λ₂e₂,μ₁e₁') + φ(λ₁e₁,μ₂e₂') + φ(λe₂,μ₂e₂')
_______________________________= λ₁μ₁φ(e₁,e₁') + λ₂μ₁φ(e₂,e₁') + λ₁μ₂φ(e₁,e₂') + λ₂μ₂φ(e₂,e₂')
_______________________________= ∑ᵢ∑jλᵢμjφ(eᵢ,ej')
(Hope that's right!)
Now in a discussion of bilinear (quadratic, hermitian) forms the terms φ(eᵢ,ej') in ∑ᵢ∑jλᵢμjφ(eᵢ,ej')
are elements of a field, & there seems to be quite a lot of theory built up for the special
case of N being a field, but thus far I can't really find any discussion of what happens
when the φ(eᵢ,ej') elements are elements of a general vector space.
Furthermore, the general case of multilinear (n-linear) maps expressed in this way
seem to follow the same pattern of focusing on fields (or rings), e.g. determinants.
The limited discussions of tensors & exterior algebra I've seen also follow this format of
focusing on maps into a field.
Just wondering what there is on maps of the form
φ : V₁ × V₂ × ... × Vn→ N
φ : V₁ × V₂ × ... × Vn→ V₁ × V₂ × ... × Vn
φ : V₁ × V₂ × ... × Vn→ W₁ × W₂ × ... × Wn
φ : V₁ × V₂ × ... × Vn→ W₁ × W₂ × ... × Wm
(all being vector spaces) as in what kind of books there are discussing this, what this would be useful for etc...
respect to the bases B = {e₁,e₂} & B' = {e₁',e₂'}:
φ : V₁ × V₂ → N | (m₁,m₂) ↦ φ(m₁,m₂) = φ(∑ᵢλᵢeᵢ,∑jμje'j)
_______________________________= φ(λ₁e₁ + λ₂e₂,μ₁e₁' + μ₂e₂') = φ(λ₁e₁ + λ₂e₂,μ₁e₁') + φ(λ₁e₁ + λe₂,μ₂e₂')
_______________________________= φ(λ₁e₁,μ₁e₁') + φ(λ₂e₂,μ₁e₁') + φ(λ₁e₁,μ₂e₂') + φ(λe₂,μ₂e₂')
_______________________________= λ₁μ₁φ(e₁,e₁') + λ₂μ₁φ(e₂,e₁') + λ₁μ₂φ(e₁,e₂') + λ₂μ₂φ(e₂,e₂')
_______________________________= ∑ᵢ∑jλᵢμjφ(eᵢ,ej')
(Hope that's right!)
Now in a discussion of bilinear (quadratic, hermitian) forms the terms φ(eᵢ,ej') in ∑ᵢ∑jλᵢμjφ(eᵢ,ej')
are elements of a field, & there seems to be quite a lot of theory built up for the special
case of N being a field, but thus far I can't really find any discussion of what happens
when the φ(eᵢ,ej') elements are elements of a general vector space.
Furthermore, the general case of multilinear (n-linear) maps expressed in this way
seem to follow the same pattern of focusing on fields (or rings), e.g. determinants.
The limited discussions of tensors & exterior algebra I've seen also follow this format of
focusing on maps into a field.
Just wondering what there is on maps of the form
φ : V₁ × V₂ × ... × Vn→ N
φ : V₁ × V₂ × ... × Vn→ V₁ × V₂ × ... × Vn
φ : V₁ × V₂ × ... × Vn→ W₁ × W₂ × ... × Wn
φ : V₁ × V₂ × ... × Vn→ W₁ × W₂ × ... × Wm
(all being vector spaces) as in what kind of books there are discussing this, what this would be useful for etc...
Last edited: