Multivariable calculus proof involving the partial derivatives of an expression

In summary, the proof explores the relationships between partial derivatives of a multivariable function, demonstrating how they can be manipulated and interpreted under various conditions. It highlights key concepts such as continuity, differentiability, and the use of the chain rule, ultimately establishing foundational results that are critical for further analysis in multivariable calculus.
  • #1
KungPeng Zhou
22
7
Homework Statement
Supposed f is a function of several variables that satisfies the equation f(tx, ty, tz) =t^{n}f(x, y, z),(t as any number).
Prove:
##xf_{x}+yf_{y}+zf_{z}=nf(x, y, z) ##
Relevant Equations
Partial derivative related formulas
For the first equation:
##f(tx, ty, tz)=f(u, v, w) ##, ##u=tx, v=ty, w=tz##,##k=f(u, v, w) ####
t^{n}f_{x}=\frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x}##
As the same calculation
##xf_{x}+yf_{y}+zf_{z}=[\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} +\frac{\partial f}{\partial z}] t^{1-n}##
But I can't continue with it.
 
Physics news on Phys.org
  • #2
KungPeng Zhou said:
Homework Statement: Supposed f is a function of several variables that satisfies the equation f(tx, ty, tz) =t^{n}f(x, y, z),(t as any number).
Prove:
##xf_{x}+yf_{y}+zf_{z}=nf(x, y, z) ##
Relevant Equations: Partial derivative related formulas

For the first equation:
##f(tx, ty, tz)=f(u, v, w) ##, ##u=tx, v=ty, w=tz##,##k=f(u, v, w) ####
t^{n}f_{x}=\frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x}##
As the same calculation
##xf_{x}+yf_{y}+zf_{z}=[\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} +\frac{\partial f}{\partial z}] t^{1-n}##
But I can't continue with it.
Introducing the variables ##u, v, w## looks unnecessary to me. Why not partially differentiate with respect to ##t##?
 
  • #3
KungPeng Zhou said:
Prove:
##xf_{x}+yf_{y}+zf_{z}=nf(x, y, z) ##
Note that this equation is somewhat sloppy. The arguments of the function ##f## are given on the right-hand side, but the arguments of the functions ##f_x, f_y## and ##f_z## on the left-hand side are not. More precise and logical would be:$$xf_{x}(x, y, x)+yf_{y}(x, y, z)+zf_{z}(x, y, z)=nf(x, y, z)$$Or, in shorthand:$$xf_{x}+yf_{y}+zf_{z}=nf$$Where the arguments ##(x, y, z)## are understood by default.
 
  • Like
Likes berkeman
  • #4
Note that ##n\cdot f(x,y,z) = \left. \dfrac{d}{dt}\right|_{t=1} \left(t^n f(x,y,z)\right)=\left. \dfrac{d}{dt}\right|_{t=1}f(tx,ty,tz).##
 
  • Like
Likes mathwonk
  • #5
PeroK said:
Note that this equation is somewhat sloppy. The arguments of the function ##f## are given on the right-hand side, but the arguments of the functions ##f_x, f_y## and ##f_z## on the left-hand side are not. More precise and logical would be:$$xf_{x}(x, y, x)+yf_{y}(x, y, z)+zf_{z}(x, y, z)=nf(x, y, z)$$Or, in shorthand:$$xf_{x}+yf_{y}+zf_{z}=nf$$Where the arguments ##(x, y, z)## are understood by default.
Ok, I have solved it. I need to defferential f(tx, ty, tz) with respect to t
 
Back
Top