- #1
ergospherical
- 1,072
- 1,363
Given a diffeo ##\phi : M \rightarrow M'## (and with ##f## a function on ##M'##), vectors ##X## can be "naturally" pushed forward with ##\phi_*## from ##T_{p}M## to ##T_{\phi(p)}M'## subject to ##\phi_{*}X(f) \bigg{|}_{\phi(p)} = X(\phi^* f) \bigg{|}_{p}##. And 1-forms ##\omega## are naturally pulled back from ##T^*_{\phi(p)}M'## to ##T^*_p M## subject to ##\langle \phi^* \omega, X \rangle \bigg{|}_{p} = \langle \omega, \phi_* X \rangle \bigg{|}_{\phi(p)}##.
Making use of the inverse ##\phi^{-1}: M' \rightarrow M##, I think it's possible to also push forward 1-forms (##\omega \mapsto \phi_* \omega##) subject to e.g. ##\langle \phi_* \omega, X \rangle \bigg{|}_{\phi(p)} = \langle \omega, {(\phi^{-1})}_* X \rangle \bigg{|}_p##. And similarly I think we can also pull back vectors (##X \mapsto \phi^* X##) subject to e.g. ##\phi^* X(f') \bigg{|}_p = X({(\phi^{-1})}^* f') \bigg{|}_{\phi(p)}##, where ##f'## is a function on ##M## [are these right?].
In any case my question is why do vectors seem to naturally be pushed forward, whilst 1-forms and functions seem too be naturally pulled back... is it simply a matter of definition? Thanks
Making use of the inverse ##\phi^{-1}: M' \rightarrow M##, I think it's possible to also push forward 1-forms (##\omega \mapsto \phi_* \omega##) subject to e.g. ##\langle \phi_* \omega, X \rangle \bigg{|}_{\phi(p)} = \langle \omega, {(\phi^{-1})}_* X \rangle \bigg{|}_p##. And similarly I think we can also pull back vectors (##X \mapsto \phi^* X##) subject to e.g. ##\phi^* X(f') \bigg{|}_p = X({(\phi^{-1})}^* f') \bigg{|}_{\phi(p)}##, where ##f'## is a function on ##M## [are these right?].
In any case my question is why do vectors seem to naturally be pushed forward, whilst 1-forms and functions seem too be naturally pulled back... is it simply a matter of definition? Thanks