- #1
forumasker
- 7
- 0
It's not really homework its more of my own thing, but I don't know where else I'd put it
Orbital characteristics
Epoch 6 March 2006 (JD 2453800.5)
Aphelion 2.594 AU (388.102 Gm)
Perihelion 1.825 AU (272.985 Gm)
Semi-major axis 2.210 AU (330.544 Gm)
Eccentricity 0.174
Orbital period 3.28 a (1199.647 d)
Average orbital speed 19.88 km/s
Mean anomaly 53.057°
Inclination 4.102°
Longitude of ascending node 253.2lllll18°
Argument of perihelion 129.532°
Proper orbital elements
Physical characteristics
Dimensions 18.2×10.5×8.9 km [1]
Mean radius 6.1 km[2]
Mass 2–3×10^16 kg (estimate)
Mean density ~2.7 g/cm³ (estimate) [3]
Equatorial surface gravity ~0.002 m/s² (estimate)
Escape velocity ~0.006 km/s (estimate)
Rotation period 0.293 d (7.042 h) [4]
Albedo 0.22 [5]
Temperature ~181 K
max: 281 K (+8°C)
Spectral type S
Absolute magnitude (H) 11.46
1199.647*24 because 24 hours, then times 60 because 60 minutes in an hour,
then times another 60 because 60 seconds in a minute, and we get about
1.03*10^8 seconds.
19.88km/s-0km/s)/(1.03*10^8s-0s)= approximately 1.93^-7km/s/s
E(sub k) = 1/2mv^2
Kinetic energy = (1/2)(2.5*10^16kg)(19.88km/s)
E(sub k) = 1/2mv^2
(v2-v1)/(t2-t1)
and the other stuff I'm looking for
The solution is kind of what I'm asking for, I need a way to convert kinetic energy directly into thermal energy, and then I also need to find how much energy it takes to raise the entire Earth's atmosphere by 1 degree of something or 1 kelvin, preferably degree.
Homework Statement
category Main belt (Flora family)Orbital characteristics
Epoch 6 March 2006 (JD 2453800.5)
Aphelion 2.594 AU (388.102 Gm)
Perihelion 1.825 AU (272.985 Gm)
Semi-major axis 2.210 AU (330.544 Gm)
Eccentricity 0.174
Orbital period 3.28 a (1199.647 d)
Average orbital speed 19.88 km/s
Mean anomaly 53.057°
Inclination 4.102°
Longitude of ascending node 253.2lllll18°
Argument of perihelion 129.532°
Proper orbital elements
Physical characteristics
Dimensions 18.2×10.5×8.9 km [1]
Mean radius 6.1 km[2]
Mass 2–3×10^16 kg (estimate)
Mean density ~2.7 g/cm³ (estimate) [3]
Equatorial surface gravity ~0.002 m/s² (estimate)
Escape velocity ~0.006 km/s (estimate)
Rotation period 0.293 d (7.042 h) [4]
Albedo 0.22 [5]
Temperature ~181 K
max: 281 K (+8°C)
Spectral type S
Absolute magnitude (H) 11.46
1199.647*24 because 24 hours, then times 60 because 60 minutes in an hour,
then times another 60 because 60 seconds in a minute, and we get about
1.03*10^8 seconds.
19.88km/s-0km/s)/(1.03*10^8s-0s)= approximately 1.93^-7km/s/s
E(sub k) = 1/2mv^2
Kinetic energy = (1/2)(2.5*10^16kg)(19.88km/s)
Homework Equations
E(sub k) = 1/2mv^2
(v2-v1)/(t2-t1)
and the other stuff I'm looking for
The Attempt at a Solution
The solution is kind of what I'm asking for, I need a way to convert kinetic energy directly into thermal energy, and then I also need to find how much energy it takes to raise the entire Earth's atmosphere by 1 degree of something or 1 kelvin, preferably degree.