- #1
Grimble
- 485
- 11
It is said many times, from the days of Einstein, Minkowski and Poincaré, that Classic or Newtonian Mechanics are not consistent with motion at relativistic speeds, that a new relativistic mechanics is needed, viz.
Albert Einstein: … the apparent incompatibility of the law of propagation of light with the principle of relativity […] has been derived by means of a consideration which borrowed two unjustifiable hypotheses from classical mechanics; these are as follows: 1
Henri Poincaré: From all these results, if they were to be confirmed, would issue a wholly new mechanics which would be characterized above all by this fact, that there could be no velocity greater than that of light, any more than a temperature below that of absolute zero. For an observer, participating himself in a motion of translation of which he has no suspicion, no apparent velocity could surpass that of light, and this would be a contradiction, unless one recalls the fact that this observer does not use the same sort of timepiece as that used by a stationary observer, but rather a watch giving the “local time.[..] Perhaps, too, we shall have to construct an entirely new mechanics that we only succeed in catching a glimpse of, where, inertia increasing with the velocity, the velocity of light would become an impassable limit.3
But just what are the differences? Is there a description?1 Albert Einstein (1879–1955). Relativity: The Special and General Theory. 1920.
XI The Lorentz Transformation.
2 Raum und Zeit(1909), Jahresberichte der Deutschen Mathematiker-Vereinigung, 1-14, B.G. Teubner
A Lecture delivered before the Naturforscher Versammlung (Congress of Natural Philosophers) at Cologne — (21st September, 1908).
3 Poincaré, Henri (1904/6), "The Principles of Mathematical Physics", Congress of arts and science, universal exposition, St. Louis, 1904 1, Boston and New York: Houghton, Mifflin and Company, pp. 604–622
Albert Einstein: … the apparent incompatibility of the law of propagation of light with the principle of relativity […] has been derived by means of a consideration which borrowed two unjustifiable hypotheses from classical mechanics; these are as follows: 1
- The time-interval (time) between two events is independent of the condition of motion of the body of reference.
- The space-interval (distance) between two points of a rigid body is independent of the condition of motion of the body of reference.
Henri Poincaré: From all these results, if they were to be confirmed, would issue a wholly new mechanics which would be characterized above all by this fact, that there could be no velocity greater than that of light, any more than a temperature below that of absolute zero. For an observer, participating himself in a motion of translation of which he has no suspicion, no apparent velocity could surpass that of light, and this would be a contradiction, unless one recalls the fact that this observer does not use the same sort of timepiece as that used by a stationary observer, but rather a watch giving the “local time.[..] Perhaps, too, we shall have to construct an entirely new mechanics that we only succeed in catching a glimpse of, where, inertia increasing with the velocity, the velocity of light would become an impassable limit.3
But just what are the differences? Is there a description?1 Albert Einstein (1879–1955). Relativity: The Special and General Theory. 1920.
XI The Lorentz Transformation.
2 Raum und Zeit(1909), Jahresberichte der Deutschen Mathematiker-Vereinigung, 1-14, B.G. Teubner
A Lecture delivered before the Naturforscher Versammlung (Congress of Natural Philosophers) at Cologne — (21st September, 1908).
3 Poincaré, Henri (1904/6), "The Principles of Mathematical Physics", Congress of arts and science, universal exposition, St. Louis, 1904 1, Boston and New York: Houghton, Mifflin and Company, pp. 604–622