I Newton's Third Law: Action & Reaction Along the Line Connecting Two Objects

  • I
  • Thread starter Thread starter MatinSAR
  • Start date Start date
  • Tags Tags
    Law
AI Thread Summary
Newton's Third Law states that for every action, there is an equal and opposite reaction, implying that forces arise from interactions between objects. However, questions arise regarding its universal applicability, particularly in cases like electromagnetism where forces may not act along the line connecting two objects. Some argue that in these scenarios, a "weak form" of the law remains valid, as momentum can be carried by electromagnetic fields rather than just the objects themselves. The discussion highlights that while forces may seem unequal in certain contexts, such as with electromagnetic waves, they still adhere to the principles of momentum conservation. Ultimately, the complexities of electromagnetic interactions challenge the straightforward application of Newton's Third Law.
MatinSAR
Messages
673
Reaction score
204
TL;DR Summary
Is this law always true or not?
Newton's Third Law: Action & Reaction
His third law states that for every action (force) in nature there is an equal and opposite reaction. If object A exerts a force on object B, object B also exerts an equal and opposite force on object A. In other words, forces result from interactions.(NASA.gov)

Can we assert that this law is universally applicable and always true? Shouldn't the forces between objects act along the line that connects them?
I think I read in a book that Newton's Third Law fails when forces do not act along the line connecting the objects, or when the force depends on particle velocities, such as in the case of magnetic forces. But I'm not sure if it's true or not because one of my professors said that in such cases weak form of the law is valid.
 
Physics news on Phys.org
You are right. It is also expressed as law of momentum conservation.
 
If we have have a current-carrying wire and a nearby magnetic pole, the forces on the wire and the magnetic pole seem to be equal and in opposite directions but not on the same line i.e. we have a turning moment. It strikes me that if force and reaction are in any circumstances unequal, we will have a means of propulsion through space, which seems implausible.
 
MatinSAR said:
TL;DR Summary: Is this law always true or not?

Newton's Third Law: Action & Reaction
His third law states that for every action (force) in nature there is an equal and opposite reaction. If object A exerts a force on object B, object B also exerts an equal and opposite force on object A. In other words, forces result from interactions.(NASA.gov)

Can we assert that this law is universally applicable and always true? Shouldn't the forces between objects act along the line that connects them?
I think I read in a book that Newton's Third Law fails when forces do not act along the line connecting the objects, or when the force depends on particle velocities, such as in the case of magnetic forces. But I'm not sure if it's true or not because one of my professors said that in such cases weak form of the law is valid.
As far as I can recall Newton's 3rd law fails in "naively" electromagnetism not because the force is not directed in the line between the two particles but because there is "force" carried by the electromagnetic fields. What I mean is that Newton's third law was for a long time equivalent to conservation of momentum. However when dealing with electrodynamics, momentum is carried by the field so it is not that easy to speak of particular forces anymore.

Example, consider two particles held in place separated by a distance ##d##. Now take away one of the charges, as you move the charge away it creates electromagnetic waves. These EM waves reach the other particle, this particle that is still at its original place feels all kind of forces, but in the meantime the other particle is gone.
 
I don't think there is an issue surrounding EM radiation, as we know it has momentum and we get a force when emitting the energy and when the waves strike suitable objects.
 
tech99 said:
I don't think there is an issue surrounding EM radiation, as we know it has momentum and we get a force when emitting the energy and when the waves strike suitable objects.
Indeed that's what I said, if you do not know that EM carries momentum/force then you might be led naively to think that electromagnetism violates momentum conservation.
 
Last edited:
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top