A Noether and the derivative of the Action

nemuritai
Messages
2
Reaction score
0
I know that the Action has units Energy·time or Momentum·position. A second fact is that the derivative of the action with respect to time is Energy and similar with momentum-position, consistent with a units ie. dimensions check.Is it a coincidence that both are Noether conserved quantities? For example will the derivative of the Action with respect to phase be electric charge?
 
Physics news on Phys.org
Angular momentum is a conserved quantity, but action is not though the both has same dimension.
 
  • Like
Likes Vanadium 50, vanhees71 and nemuritai
:welcome:

nemuritai said:
I know that the Action has units Energy·time or Momentum·position. A second fact is that the derivative of the action with respect to time is Energy and similar with momentum-position, consistent with a units ie. dimensions check. Is it a coincidence that both are Noether conserved quantities?
If the Lagrangian is independent of time then energy is conserved. And, if it is indepenent of a spatial coordinate, then momentum in that direction is conserved. I don't see that as a coincidence.
nemuritai said:
For example will the derivative of the Action with respect to phase be electric charge?
I don't understand this question.
 
  • Like
Likes nemuritai and vanhees71
It's of course not a coincidence, because if the Lagrangian doesn't depend on some coordinate ##q## (but only its generalized velocity ##\dot{q}##), then the canonical momentum is conserved for the solutions of the equation of motion, i.e., it is a conserved quantity:
$$p_q=\frac{\partial L}{\partial \dot{q}} \; \Rightarrow \; \dot{p}_q = \frac{\partial L}{\partial q}=0.$$
This canonical momentum is the generator of a symmetry (Noether's theorem).
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top